Weight entry errors can cause significant patient harm in pediatrics due to pervasive weight-based dosing practices. While computerized algorithms can assist in error detection, they have not achieved high sensitivity and specificity to be further developed as a clinical decision support tool. To train an advanced algorithm, expert-annotated weight errors are essential but difficult to collect. In this study, we developed a visual annotation tool to gather large amounts of expertly annotated pediatric weight charts and conducted a formal user-centered evaluation. Key features of the tool included configurable grid sizes and annotation styles. The user feedback was collected through a structured survey and user clicks on the interface. The results show that the visual annotation tool has high usability (average SUS=86.4). Different combinations of the key features, however, did not significantly improve the annotation efficiency and duration. We have used this tool to collect expert annotations for algorithm development and benchmarking.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220130DOI Listing

Publication Analysis

Top Keywords

visual annotation
12
annotation tool
12
user-centered evaluation
8
pediatric weight
8
weight entry
8
entry errors
8
key features
8
tool
6
annotation
5
evaluation visual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!