Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automated abstracts classification could significantly facilitate scientific literature screening. The classification of short texts could be based on their statistical properties. This research aimed to evaluate the quality of short medical abstracts classification primarily based on text statistical features. Twelve experiments with machine learning models over the sets of text features were performed on a dataset of 671 article abstracts. Each experiment was repeated 300 times to estimate the classification quality, ending up with 3600 tests total. We achieved the best result (F1 = 0.775) using a random forest machine learning model with keywords and three-dimensional Word2Vec embeddings. The classification of scientific abstracts might be implemented using straightforward and computationally inexpensive methods presented in this paper. The approach we described is expected to facilitate literature selection by researchers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI220075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!