A Novel Personalized Random Forest Algorithm for Clinical Outcome Prediction.

Stud Health Technol Inform

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Published: June 2022

Machine learning algorithms that derive predictive models are useful in predicting patient outcomes under uncertainty. These are often "population" algorithms which optimize a static model to predict well on average for individuals in the population; however, population models may predict poorly for individuals that differ from the average. Personalized machine learning algorithms seek to optimize predictive performance for every patient by tailoring a patient-specific model to each individual. Ensembles of decision trees often outperform single decision tree models, but ensembles of personalized models like decision paths have received little investigation. We present a novel personalized ensemble, called Lazy Random Forest (LazyRF), which consists of bagged randomized decision paths optimized for the individual for whom a prediction will be made. LazyRF outperformed single and bagged decision paths and demonstrated comparable predictive performance to a population random forest method in terms of discrimination on clinical and genomic data while also producing simpler models than the population random forest.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220072DOI Listing

Publication Analysis

Top Keywords

random forest
16
decision paths
12
novel personalized
8
machine learning
8
learning algorithms
8
predictive performance
8
population random
8
models
5
decision
5
random
4

Similar Publications

In this study, we identified features with the largest contributions and property trends in predicting the adsorption energies of carbon, hydrogen, and oxygen adsorbates on transition metal (TM) surfaces by performing Density Functional Theory (DFT)-based calculations and Machine Learning (ML) regression models. From 26 monometallic and 400 bimetallic fcc(111) TM surfaces obtained from Catalysis-hub.org, three datasets consisting of fourteen elemental, electronic, and structural properties were generated using DFT calculations, site calculations, and online databases.

View Article and Find Full Text PDF

Introduction: The phase 3 trial CLARITY AD found lecanemab slowed cognitive decline by 27%. However, subgroup analyses indicated a significant 31% sex difference in the effect and suggested no or limited effectiveness in females. We used simulations constrained by the trial design to determine whether that difference reflects a pre-existing sex difference in Alzheimer's disease progression or was a random event.

View Article and Find Full Text PDF

The presence of microplastics (MPs) in agricultural soils substantially affects the growth, reproduction, feeding, survival, and immunity levels of soil biota. Therefore, it is crucial to investigate fast, effective, and accurate techniques for the detection of soil MPs. This work explores the integration of terahertz time-domain spectroscopy (THz-TDS) techniques with machine learning algorithms to develop a method for the classification and detection of MPs.

View Article and Find Full Text PDF

Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline.

View Article and Find Full Text PDF

Background: Fertility preferences refer to the number of children an individual would like to have, regardless of any obstacles that may stand in the way of fulfilling their aspirations. Despite the creation and application of numerous interventions, the overall fertility rate in West African nations, particularly Nigeria, is still high at 5.3% according to 2018 Nigeria Demographic and Health Survey data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!