Background: Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry.
Results: Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits.
Conclusions: AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172142 | PMC |
http://dx.doi.org/10.1186/s12870-022-03670-1 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFFood Chem
December 2024
Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China. Electronic address:
Fluctuations in energy status are critical physiological factors influencing postharvest fruit quality. However, the role of autophagy, a stress-resistant biological process, in regulating postharvest fruit energy status remains unclear. In this study, we treated strawberry fruit with the autophagy inhibitor hydroxychloroquine (HCQ) to investigate the role of autophagy in maintaining energy status.
View Article and Find Full Text PDFGenes (Basel)
October 2024
Comprehensive Experimental Field, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
J Exp Bot
November 2024
School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
Strawberry ripening is non-climacteric, and post-harvest fruit enter senescence and deteriorate rapidly. Chilled storage induces transcriptome wide changes in gene expression, including the down-regulation of aroma related genes. Histone marks are associated with transcriptional activation or repression; the H3K27me3 mark is mainly associated with repression of gene expression.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!