A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scoring metrics for assessing skills in arthroscopic rotator cuff repair: performance comparison study of novice and expert surgeons. | LitMetric

Purpose: We aim to develop quantitative performance metrics and a deep learning model to objectively assess surgery skills between the novice and the expert surgeons for arthroscopic rotator cuff surgery. These proposed metrics can be used to give the surgeon an objective and a quantitative self-assessment platform.

Methods: Ten shoulder arthroscopic rotator cuff surgeries were performed by two novices, and fourteen were performed by two expert surgeons. These surgeries were statistically analyzed. Two existing evaluation systems: Basic Arthroscopic Knee Skill Scoring System (BAKSSS) and the Arthroscopic Surgical Skill Evaluation Tool (ASSET), were used to validate our proposed metrics. In addition, a deep learning-based model called Automated Arthroscopic Video Evaluation Tool (AAVET) was developed toward automating quantitative assessments.

Results: The results revealed that novice surgeons used surgical tools approximately 10% less effectively and identified and stopped bleeding less swiftly. Our results showed a notable difference in the performance score between the experts and novices, and our metrics successfully identified these at the task level. Moreover, the F1-scores of each class are found as 78%, 87%, and 77% for classifying cases with no-tool, electrocautery, and shaver tool, respectively.

Conclusion: We have constructed quantitative metrics that identified differences in the performances of expert and novice surgeons. Our ultimate goal is to validate metrics further and incorporate these into our virtual rotator cuff surgery simulator (ViRCAST), which has been under development. The initial results from AAVET show that the capability of the toolbox can be extended to create a fully automated performance evaluation platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769496PMC
http://dx.doi.org/10.1007/s11548-022-02683-3DOI Listing

Publication Analysis

Top Keywords

rotator cuff
16
arthroscopic rotator
12
expert surgeons
12
novice expert
8
cuff surgery
8
proposed metrics
8
evaluation tool
8
novice surgeons
8
metrics identified
8
arthroscopic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!