A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lack of an Effect of Polysorbate 80 on Intestinal Drug Permeability in Humans. | LitMetric

Purpose: Despite no broad, direct evidence in humans, there is a potential concern that surfactants alter active or passive drug intestinal permeation to modulate oral drug absorption. The purpose of this study was to investigate the impact of the surfactant polysorbate 80 on active and passive intestinal drug absorption in humans.

Methods: The human (n = 12) pharmacokinetics (PK) of three probe substrates of intestinal absorption, valacyclovir, chenodeoxycholic acid (CDCA), and enalaprilat, were assessed. Endogenous bile acid levels were assessed as a secondary measure of transporter and microbiota impact.

Results: Polysorbate 80 did not inhibit peptide transporter 1 (PepT1)- or apical sodium bile acid transporter (ASBT)-mediated PK of valacyclovir and CDCA, respectively. Polysorbate 80 did not increase enalaprilat absorption. Modest increases in unconjugated secondary bile acid C ratios suggest a potential alteration of the in vivo intestinal microbiota by polysorbate 80.

Conclusions: Polysorbate 80 did not alter intestinal membrane fluidity or cause intestinal membrane disruption. This finding supports regulatory relief of excipient restrictions for Biopharmaceutics Classification System-based biowaivers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-022-03312-zDOI Listing

Publication Analysis

Top Keywords

bile acid
12
intestinal drug
8
active passive
8
drug absorption
8
intestinal membrane
8
intestinal
7
polysorbate
5
lack polysorbate
4
polysorbate intestinal
4
drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!