Although male-female differences in placental structure and function have been observed, little is understood about their molecular underpinnings. Here, we present a mega-analysis of 14 publicly available placenta DNA methylation (DNAm) microarray datasets to identify individual CpGs and regions associated with fetal sex. In the discovery dataset of placentas from full term pregnancies (N = 532 samples), 5212 CpGs met genome-wide significance (p < 1E-8) and were enriched in pathways such as keratinization (FDR p-value = 7.37E-14), chemokine activity (FDR p-value = 1.56E-2), and eosinophil migration (FDR p-value = 1.83E-2). Nine differentially methylated regions were identified (fwerArea < 0.1) including a region in the promoter of ZNF300 that showed consistent differential DNAm in samples from earlier timepoints in pregnancy and appeared to be driven predominately by effects in the trophoblast cell type. We describe the largest study of fetal sex differences in placenta DNAm performed to date, revealing genes and pathways characterizing sex-specific placenta function and health outcomes later in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174475PMC
http://dx.doi.org/10.1038/s41598-022-13544-zDOI Listing

Publication Analysis

Top Keywords

placenta dna
8
dna methylation
8
large-scale placenta
4
methylation integrated
4
integrated analysis
4
analysis reveals
4
reveals fetal
4
fetal sex-specific
4
sex-specific differentially
4
differentially methylated
4

Similar Publications

Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation.

Ecotoxicol Environ Saf

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:

Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.

View Article and Find Full Text PDF

Background: The study of women exposures and child outcomes occurring in the first 1,000 days of life since conception enhances understanding of the relationships between environmental factors, epigenetic changes, and disease development, extending beyond childhood and spanning the entire lifespan. Generation Gemelli is a recently launched case-control study that enrolls mother-newborns pairs in one of the largest university hospitals in Italy, in order to examine the association between maternal environmental exposures and intrauterine growth restriction (IUGR) and the risk of premature birth. The study will also evaluate the association of maternal exposures and the health and growth of infants and children up to 24 months of age.

View Article and Find Full Text PDF

Prenatal stress alters mouse offspring dorsal striatal development and placental function in sex-specific ways.

J Psychiatr Res

January 2025

Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA. Electronic address:

Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.

View Article and Find Full Text PDF

Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!