AI Article Synopsis

  • The STORR gene fusion is crucial for the creation of certain alkaloids in opium poppy by enabling a key protein to convert (S)-reticuline to (R)-reticuline, necessary for turn into promorphinans and morphinans.
  • Research shows that among 12 Papaver species examined, those with the STORR fusion typically produce these alkaloids, except P. californicum, which, despite having the gene, does not synthesize them.
  • The gene fusion is estimated to have occurred 16.8-24.1 million years ago before P. californicum diverged from other Papaver species, suggesting that STORR may also play a role in

Article Abstract

The STORR gene fusion event is considered essential for the evolution of the promorphinan/morphinan subclass of benzylisoquinoline alkaloids (BIAs) in opium poppy as the resulting bi-modular protein performs the isomerization of (S)- to (R)-reticuline essential for their biosynthesis. Here, we show that of the 12 Papaver species analysed those containing the STORR gene fusion also contain promorphinans/morphinans with one important exception. P. californicum encodes a functionally conserved STORR but does not produce promorphinans/morphinans. We also show that the gene fusion event occurred only once, between 16.8-24.1 million years ago before the separation of P. californicum from other Clade 2 Papaver species. The most abundant BIA in P. californicum is (R)-glaucine, a member of the aporphine subclass of BIAs, raising the possibility that STORR, once evolved, contributes to the biosynthesis of more than just the promorphinan/morphinan subclass of BIAs in the Papaveraceae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9174169PMC
http://dx.doi.org/10.1038/s41467-022-30856-wDOI Listing

Publication Analysis

Top Keywords

gene fusion
16
storr gene
12
papaver species
12
functionally conserved
8
conserved storr
8
years ago
8
fusion event
8
promorphinan/morphinan subclass
8
subclass bias
8
storr
5

Similar Publications

Background: The histologic classification of rhabdomyosarcoma (RMS) as alveolar (aRMS) or embryonal (eRMS) is of prognostic importance, with the aRMS being associated with a worse outcome. Specific gene fusions (PAX3/7::FOXO1) found in the majority of aRMS have been recognized as markers associated with poor prognosis and are included in current risk stratification instead of histologic subtypes in localized disease. In metastatic disease, the independent prognostic significance of fusion status has not been definitively established.

View Article and Find Full Text PDF

We report a case showing that lorlatinib is effective in treating EML4-ALK-positive low-grade serous ovarian cancer (LGSO) with intracranial metastasis. This may be the first clinical evidence of LGSO benefit from ALK inhibitors, to provide evidence for the use of ALK inhibitors in more ovarian cancer patients with EML4-ALK fusion and promoting new ideas for the study of EML4-ALK targets in ovarian cancer.

View Article and Find Full Text PDF

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of novel 1H-indole-3-carbonitrile derivatives as potent TRK Inhibitors.

Eur J Med Chem

January 2025

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:

Tropomyosin receptor kinase (TRK) has emerged as a promising therapeutic target in cancers driven by NTRK gene fusions. Herein, we report a highly potent TRK inhibitor, C11, developed using bioisosteric replacement and computer-aided drug design (CADD) strategies. Compound C11 demonstrated significant antiproliferative effects against TRK-dependent cell lines (Km-12), and exhibited a dose-dependent inhibition of both colony formation and cell migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!