Recently discovered topological nodal-line semimetals (TNLSMs) have received considerable research interest due to their rich physical properties and potential applications. TNLSMs have the particular band structure to lead to many novel properties. Here we theoretically study the thermoelectric transport of a two-terminal pristine TNLSM nanowires and TNLSMs--junctions. The Seebeck coefficientsand the thermoelectrical figure of meritare calculated based on the Landauer-Büttiker formula combined with the nonequilibrium Green's function method. In pristine TNLSM nanowires, we discuss the effect of the magnetic fields, the disorder, the on-site energy, and the mass termon the thermoelectric coefficient and find that the transport gap can lead to a largeand. When transmission coefficient jumps from one integer plateau to another,andshow a series of peaks. The peaks ofandare determined by the jump of the transmission coefficient plateau and are not associated with the plateau itself. For TNLSMs--junctions,andstrongly depend on the parameterof potential well. We can get a largeby adjusting the parameterand magnetic field. In TNLSMs--junctions,has the large value and is easily regulated. This setup has promising application prospects as a thermoelectric device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac768a | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong.
Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. BiTe exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi(Te, Se) (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands.
View Article and Find Full Text PDFNanoscale
January 2025
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
Superlattices are significant means to reduce the lattice thermal conductivity of thermoelectric materials and optimize their performance. In this work, using high-precision first-principles based neural network potentials combined with non-equilibrium molecular dynamics simulations and the phonon Boltzmann transport equation, the lattice thermal conductivities of BiTe monolayer and lateral BiTe/SbTe monolayer superlattices are thoroughly investigated. As the period length increases, the thermal conductivity shows a trend of an initial decrease followed by an increase, which aligns with conventional observations.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian, 350002, China.
Controlling the microstructure of semiconducting polymers is critical for optimizing thermoelectric performance, yet remains challenging, requiring complex processing techniques like alignment. In this study, a straightforward strategy is introduced to enhance the thermoelectric properties of semi-crystalline polymer films by incorporating minimal amounts of nucleating agents, a method widely used in traditional polymer industries. By blending less than 1 wt% of N,N'-(1,4-phenyl)diisonicotinamide (PDA) into poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14), controlled modulation of crystallization behavior is achieved, resulting in reduced structural disorder and enhanced charge carrier mobility.
View Article and Find Full Text PDFNano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!