An industrial ceramic nanofiltration membrane (pore size 0.9 nm) was tested in a Canadian oil field for more than 12,500 h to treat wastewater directly from daily operations, without any type of pre-treatment. This wastewater contained a high content of total suspended solids (13 to 510 mg/kg), and total organic carbon (31 to 134 mg/kg). The membrane unit was operated at different transmembrane pressure (TMP) set points (4-16 bar) and recovery set points (40-80%). The data show that ion and compound rejection depend strongly on a combination of both TMP and recovery, with the largest rejection occurring at low recovery values and high TMP values. Two mechanisms were responsible for rejection: sieving, which mostly impacted compound rejection, and electrostatic phenomena that impacted ion rejection. It is shown that ion rejection depends linearly on charge density of the ion. Ion rejection was measured as high as 85% and compounds (such as TSS) were rejected as high as 100%. The specific flux varied between 1-10 L/(m.h.bar). Results from this field testing indicate the possibility of using these types of ceramic membranes for oil field wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118593DOI Listing

Publication Analysis

Top Keywords

ion rejection
12
industrial ceramic
8
ceramic nanofiltration
8
wastewater treatment
8
oil field
8
set points
8
compound rejection
8
rejection
7
ion
5
performance evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!