The exoskeletons of crustaceans are essential for providing protection from predators and other environmental threats. Understanding the structure and mechanical behavior of their natural armor could inspire the design of lightweight and high toughness synthetic materials. Most published work has focused on marine crustacea rather than their terrestrial counterparts, which are exposed to a multitude of unique threats. The interest in the terrestrial isopod Armadillidium vulgare (A. vulgare) has grown but the interrelationship between the microstructure, chemical composition, and mechanical properties has not been thoroughly investigated. Thus, this study aims to elucidate missing details concerning this biological mineralized composite. Exoskeleton specimens were fixated to preserve the intrinsic protein structure. We utilize scanning electron microscopy for microstructure analysis, Raman spectroscopy for elemental analysis, and nanoindentation property mapping to achieve mechanical characterization. The naturally fractured A. vulgare exoskeleton cross-section reveals four subregions with the repeating helicoidal 'Bouligand' arrangement most prominent in the endocuticle. The hardness and reduced modulus distributions exhibit a through-thickness exponential gradient with decreasing magnitudes from the outermost to the innermost layers of the exoskeleton. The Raman spectra show a graded spatial distribution of key constituents such as calcium carbonate across the thickness, some of which are consistent with the mechanical property gradient. Potential microstructure, elemental composition, and mechanical property relationships are discussed to explain how the hierarchical structure of this nanolaminate armor protects this species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2022.105299 | DOI Listing |
Ultrasound Med Biol
January 2025
Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:
Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.
Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.
Int J Biol Macromol
January 2025
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary. Electronic address:
The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!