Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Films.

Langmuir

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Published: June 2022

Thin liquid polymer films can be topographically patterned when polymer/air interfaces are deformed by surface-tension gradients. Toward this end, a recently developed method first photochemically patterns surface-tension gradients along a solid, flat polymer film. On heating to the liquid state, the film initially develops topography reflecting the patterned surface-tension gradients. But capillary leveling and diffusion of the photoproduct oppose this causing the features to eventually decay back to a flat film upon extended thermal annealing. Intuitively, this interplay between competing mechanisms sets a limit on the maximum film deformation during the process. Prior studies show that the initial film thickness, photomask periodicity, and amount of photochemical conversion significantly affect the maximum film deformation. Here, we use a model based on lubrication theory to develop additional insights into this observation. We identify two regimes, capillary-leveling-dominated and photoproduct-diffusion-dominated, wherein the respective dominant mechanism determines the maximum film deformation that can be additionally related to various experimental parameters. Scaling laws for the variation of maximum film deformation and aspect ratio with film thickness and surface-tension pattern periodicity are also developed. Complementary experiments show good agreement with model predictions. Insights into the effect of surface-tension pattern asymmetry on the maximum film deformation are also provided. These findings reveal mechanistic detail and fundamental principles that are useful for controlling the process to form target patterns of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c00179DOI Listing

Publication Analysis

Top Keywords

maximum film
20
film deformation
20
surface-tension gradients
12
film
10
aspect ratio
8
polymer films
8
film thickness
8
surface-tension pattern
8
deformation
6
surface-tension
5

Similar Publications

W/WO/TiO Multilayer Film with Elevated Electrochromic and Capacitive Properties.

Materials (Basel)

January 2025

College of Physics and Electronic Information, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.

Electrochromic capacitors, which are capable of altering their appearances in line with their charged states, are drawing substantial attention from both academia and industry. Tungsten oxide is usually used as an electrochromic layer material for electrochromic devices, or as an active material for high-performance capacitor electrodes. Despite this, acceptable visual aesthetics in electrochromic capacitors have almost never been achieved using tungsten oxide, because, in its pure form, this compound only displays a onefold color modulation from transparent to blue.

View Article and Find Full Text PDF

All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites.

Nat Mater

January 2025

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.

Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.

View Article and Find Full Text PDF

New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media.

Nanomaterials (Basel)

December 2024

Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.

Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!