A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of Pr from nuclear purity water using hydroxyapatite. | LitMetric

Removal of Pr from nuclear purity water using hydroxyapatite.

J Environ Sci Health A Tox Hazard Subst Environ Eng

CONACyT - Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, C. P., México.

Published: July 2022

The adsorption of praseodymium using hydroxyapatite was evaluated. The hydroxyapatite (HAP) was characterized by X-ray diffraction (JCPDS 01-04-3708), scanning electron microscopy, BET specific surface area (54.2 m/g), and point of zero charge (6.5). Adsorption kinetics and isotherms were evaluated at pH of 3 and Pr was determined using a gamma spectrometer. The adsorption of praseodymium was fast (1 min of contact) with an adsorption capacity of 1.68 mg/g and the data were best adjusted to the pseudo-second-order model, whereas the data of adsorption isotherm were best adjusted to the Langmuir model with a maximum adsorption capacity of 39.16 ± 0.20 mg/g. The thermodynamic parameters indicated that a physicochemical mechanism took place in the adsorption of praseodymium by HAP (adsorption enthalpy = 31.65 kJ/mol), the randomness of the system increased (adsorption entropy = 0.16 kJ/mol), and according with Gibbs free energy, the adsorption process was spontaneous at high temperature. The praseodymium in the hydroxyapatite is stable, it could not be desorbed using different solutions (ammonium sulfate, calcium chloride, sodium chloride, hydrochloric acid, and sodium hydroxide).

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2022.2084310DOI Listing

Publication Analysis

Top Keywords

adsorption praseodymium
12
adsorption
10
praseodymium hydroxyapatite
8
adsorption capacity
8
best adjusted
8
removal nuclear
4
nuclear purity
4
purity water
4
hydroxyapatite
4
water hydroxyapatite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!