Hexachlorobenzene (HCB), listed on the Stockholm Convention on persistent organic pollutants and regulated as a hazardous priority pollutant by the Water Framework Directive (WFD), is ubiquitously distributed in the environment and assumed to mildly biomagnify in aquatic foodwebs. The proposal to include trophic magnification factors (TMFs) in the procedure for comparing contaminant levels in biota at different trophic levels (TLs) with WFD environmental quality standards requires adequate selection of TMFs. In the first step of our study, we compared two independently obtained datasets of pentachlorobenzene (PeCB) and HCB concentration ratios from passive sampling (PS) in water and in fish through routine monitoring programs in Norway to evaluate possible biomagnification. In this procedure, PeCB is used for benchmarking the bioconcentration in fish, and the observed HCB/PeCB ratios in fish are compared with ratios expected in the case of (i) HCB bioconcentration or (ii) biomagnification using published TMF values. Results demonstrate that it is not possible to confirm that HCB biomagnifies in fish species that would be used for WFD monitoring in Norway and challenges the proposed monitoring procedures for such compounds in Norwegian or European waters. In the second step, fish-water chemical activity ratios for HCB and PeCB as well as for polychlorinated biphenyls where biota and PS were conducted alongside were calculated and found to rarely exceed unity for cod (), a fish species with a TL of approximately 4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228060 | PMC |
http://dx.doi.org/10.1021/acs.est.2c00714 | DOI Listing |
Environ Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Analytical and Applied Chemistry, School of Engineering, IQS-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
Nutrients
December 2024
National Institute of Women, Children and Adolescents Health Fernandes Figueira-Fiocruz, Rio de Janeiro 22250-020, Brazil.
Background/objectives: This study aimed to determine the percentage and duration of neutralizing antibodies against the Omicron variant in human milk after vaccination against SARS-CoV-2, considering the three different vaccine technologies approved in Brazil.
Methods: A cross-sectional study was conducted with lactating women who received the complete vaccination cycle with available vaccines (AstraZeneca, Pfizer, CoronaVac, and Janssen). The participants resided in Rio de Janeiro, and samples were collected from April to October 2022.
Materials (Basel)
January 2025
Department of Corrosion and Electrochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233 Gdansk, Poland.
Mechanical stress is one of the factors influencing the initiation of pitting corrosion and deterioration of the protective properties of the passive layer on stainless steel. The tests carried out on AISI 304L stainless steel showed that, in the 3.5% NaCl environment for samples loaded in the elastic and plastic range, no pitting corrosion initiation was observed.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (PCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!