Accelerated mononuclear cell telomere attrition in breast cancer survivors with depression history: A 2-year longitudinal cohort study.

Cancer

Cousins Center for Psychoneuroimmunology, UCLA Jane & Terry Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.

Published: August 2022

Background: Cancer treatments are thought to accelerate biological aging, although this trajectory is highly variable. Depression is more prevalent in breast cancer survivors and is thought to be a vulnerability factor for biological aging. A lifetime history of depression and cumulative lifetime number of depression episodes could hypothetically be associated with an accelerated rate of biological aging as indexed by attrition of telomere length in a prospective cohort of breast cancer survivors who were not currently depressed.

Methods: Breast cancer survivors (n = 206) without current depression were recruited from a large community-based health plan and were assessed for depression history by a structured diagnostic interview. Blood specimens were provided at baseline and every 8 months over 24 months to measure peripheral blood mononuclear cell (PBMC) telomere length. Mixed linear models examined associations of depression history and number of depression episodes with change in telomere length, adjusting for demographic, comorbidity, and cancer-specific factors.

Results: In the fully adjusted model, depression history predicted attrition of PBMC telomere length over 24 months (Beta [SE] = -.006 [.002], p = .001). Greater number of depressive episodes over the lifetime was also associated with accelerated attrition of PBMC telomere length over 24 months (Beta [SE] = -.004 [.001], p = .001).

Conclusions: In breast cancer survivors without current depression, telomere attrition over 24 months was greatest in those with a lifetime depression history, particularly those with the greatest number of episodes of major depressive disorder over their lifetime. Depression history and its cumulative burden may contribute to accelerated biological aging, with implications for risk of morbidity and mortality in breast cancer survivors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncr.34329DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer survivors
24
depression history
24
telomere length
20
biological aging
16
depression
12
pbmc telomere
12
mononuclear cell
8
telomere attrition
8
number depression
8

Similar Publications

Background: Randomized clinical trials (RCTs) are fundamental to evidence-based medicine, but their real-world impact on clinical practice often remains unmonitored. Leveraging large-scale real-world data can enable systematic monitoring of RCT effects. We aimed to develop a reproducible framework using real-world data to assess how major RCTs influence medical practice, using two pivotal surgical RCTs in gynaecologic oncology as an example-the LACC (Laparoscopic Approach to Cervical Cancer) and LION (Lymphadenectomy in Ovarian Neoplasms) trials.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!