A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Pt Electronic States through Formation of a Schottky Junction on Non-reducible Metal-Organic Frameworks for Enhanced Photocatalysis. | LitMetric

Charge transfer between metal sites and supports is crucial for catalysis. Redox-inert supports are usually unfavorable due to their less electronic interaction with metal sites, which, we demonstrate, is not always correct. Herein, three metal-organic frameworks (MOFs) are chosen to mimic inert or active supports for Pt nanoparticles (NPs) and the photocatalysis is studied. Results demonstrate the formation of a Schottky junction between Pt and the MOFs, leading to the electron-donation effect of the MOFs. Under light irradiation, both the MOF electron-donation effect and Pt interband excitation dominate the Pt electron density. Compared with the "active" UiO-66 and MIL-125 supports, Pt NPs on the "inert" ZIF-8 exhibit higher electron density due to the higher Schottky barrier, resulting in superior photocatalytic activity. This work optimizes metal catalysts with non-reducible supports, and promotes the understanding of the relationship between the metal-support interaction and photocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202206108DOI Listing

Publication Analysis

Top Keywords

formation schottky
8
schottky junction
8
metal-organic frameworks
8
metal sites
8
electron density
8
supports
5
optimizing electronic
4
electronic states
4
states formation
4
junction non-reducible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!