Depression is a global prevalent ailment for possible mental illness or mental disorder globally. Recognizing depressed early signs is critical for evaluating and preventing mental illness. With the progress of machine learning, it is possible to make intelligent systems capable of detecting depressive symptoms using speech analysis. This study presents a hybrid model to identify and predict mental illness from Arabic speech analysis due to depression. The proposed hybrid model comprises convolutional neural network (CNN) and a support vector machine (SVM) to identify and predict mental disorders. Experiments are performed on the Arabic speech benchmark data set of 200 speeches. A total of 70% of data were reserved for training, while 30% of data were to test the proposed model. The hybrid model (CNN + SVM) attained a 90.0% and 91.60% accuracy rate to predict the depression from Arabic speech analysis for training and testing stages. To authenticate the results of a proposed hybrid model, recurrent neural network (RNN) and CNN are also applied to the same data set individually, and the results are compared with each other. The RNN achieved an 80.70% and 81.60% accuracy rate to predict depression while speaking in the training and testing stages. The CNN predicted the depression in the training and testing stages with 88.50% and 86.60% accuracy rates. Based on the analysis, the proposed hybrid model secured better prediction results than individual RNN and CNN models on the same data set. Furthermore, the suggested model had a lower FPR, FNR, and higher accuracy, AUC, sensitivity, and specificity rate than individual RNN, CNN model performance in predicting depression. Finally, the achieved findings will be helpful to classify depression while speaking Arabic/speech and will be beneficial for physicians, psychiatrists, and psychologists in the detection of depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166990PMC
http://dx.doi.org/10.1155/2022/8622022DOI Listing

Publication Analysis

Top Keywords

hybrid model
20
arabic speech
16
speech analysis
16
mental illness
16
proposed hybrid
12
data set
12
training testing
12
testing stages
12
rnn cnn
12
depression
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!