Intimal hyperplasia and restenosis caused by excessive proliferation of smooth muscle cells (SMC) are the main factors for the failure of stent implantation. Drug-eluting stents carried with antiproliferative drugs have emerged as a successful approach to alleviate early neointimal development. However, these agents have been reported to have an undesirable effect on re-endothelialization. In this study, we proposed an integrated bioresorbable stent coated with dipyridamole (DP)-loaded poly(D,L-lactide) (PDLLA) nanofibers. Three-dimensional (3D) bioresorbable stents were fabricated by printing on a rotation mandrel using polycaprolactone (PCL), and the stents were further coated with PDLLA/DP nanofibers. The in vitro degradation and drug release evaluation illustrated the potential for long-term release of DP. Stents coated with PDLLA/DP nanofibers showed excellent hemocompatibility. The cell viability, proliferation, and morphology analysis results revealed that stents coated with PDLLA/DP nanofibers could prevent the proliferation of SMC and have no adverse effects on endothelial cells. The in vivo implantation of stents coated with PDLLA/DP nanofibers showed initial patency and continuous endothelialization and alleviated neointimal formation. The attractive in vitro and in vivo performance indicated its potential for restenosis prevention and endothelialization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159485PMC
http://dx.doi.org/10.18063/ijb.v8i2.543DOI Listing

Publication Analysis

Top Keywords

stents coated
16
coated pdlla/dp
16
pdlla/dp nanofibers
16
bioresorbable stent
8
stent coated
8
restenosis prevention
8
prevention endothelialization
8
coated
6
stents
6
nanofibers
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!