Objectives: Knowledge of the urinary metabolomic profiles of healthy children and adolescents plays a promising role in the field of pediatrics. Metabolomics has also been used to diagnose disease, discover novel biomarkers, and elucidate pathophysiological pathways. Attention-deficit/hyperactivity disorder (ADHD) is one of the most common psychiatric disorders in childhood. However, large-sample urinary metabolomic studies in children with ADHD are relatively rare. In this study, we aimed to identify specific biomarkers for ADHD diagnosis in children and adolescents by urinary metabolomic profiling.

Methods: We explored the urine metabolome in 363 healthy children aged 1-18 years and 76 patients with ADHD using high-resolution mass spectrometry.

Results: Metabolic pathways, such as arachidonic acid metabolism, steroid hormone biosynthesis, and catecholamine biosynthesis, were found to be related to sex and age in healthy children. The urinary metabolites displaying the largest differences between patients with ADHD and healthy controls belonged to the tyrosine, leucine, and fatty acid metabolic pathways. A metabolite panel consisting of FAPy-adenine, 3-methylazelaic acid, and phenylacetylglutamine was discovered to have good predictive ability for ADHD, with a receiver operating characteristic area under the curve (ROC-AUC) of 0.918. A panel of FAPy-adenine, N-acetylaspartylglutamic acid, dopamine 4-sulfate, aminocaproic acid, and asparaginyl-leucine was used to establish a robust model for ADHD comorbid tic disorders and controls with an AUC of 0.918.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163378PMC
http://dx.doi.org/10.3389/fpsyt.2022.819498DOI Listing

Publication Analysis

Top Keywords

urinary metabolomic
16
healthy children
16
attention-deficit/hyperactivity disorder
8
adhd
8
disorder adhd
8
children adolescents
8
patients adhd
8
metabolic pathways
8
children
6
urinary
5

Similar Publications

Exploring biomarkers of regular wine consumption in human urine: Targeted and untargeted metabolomics approaches.

Food Chem

December 2024

Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain. Electronic address:

The epidemiological assessment of wine consumption usually has been obtained using self-reporting questionnaires. In this study, two metabolomic approaches, targeted and untargeted, were applied to 24-h urine samples from a cohort of La Rioja (Spain) (aged 52-78), comparing moderate and daily wine consumers (20 males and 13 females) without diet intervention, versus non-consumers (8 males and 35 females). Results showed that the non-targeted metabolomics approach has allowed for the annotation of sixteen compounds in 24-h urine samples from regular wine-consumers that were not detected in the urine of non-wine consumers.

View Article and Find Full Text PDF

: Clinical findings have shown a negative correlation between the severity of depressive symptoms and serum uric acid levels in men, yet the role of metabolic regulation in the pathophysiology of depression remains largely unknown. : In this study, we utilized an acute restraint-stress-induced male rat model of depression to investigate biochemical changes through NMR-based metabolomics combined with serum biochemical analysis. Additionally, we employed qPCR, immunoblotting, and enzyme activity assays to assess the expression and activity of xanthine oxidoreductase, the rate-limiting enzyme in uric acid production.

View Article and Find Full Text PDF

Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.

Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.

View Article and Find Full Text PDF

Astragali Radix (AR) is one of the monarch drugs of Fangji Huangqi decoction and has the effects of inducing diuresis to alleviate edema, tonifying and strengthening the body. However, there is a paucity of research regarding the effective fraction and the underlying metabolic mechanism of AR on nephrotic syndrome (NS). This work aims to elucidate the potential mechanisms of AR treating NS, as well as to identify effective part and components.

View Article and Find Full Text PDF

Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis.

J Ethnopharmacol

December 2024

State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China. Electronic address:

Ethnopharmacological Relevance: Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!