Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve?

EPMA J

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr AlAiny, Cairo, 11562 Egypt.

Published: June 2022

COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood-brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, "What are the hallmarks of neurodegeneration during COVID-19 infection?" and "Are epigenetics promising solution against post-COVID-19 neurodegeneration?" In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, "What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?" especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160520PMC
http://dx.doi.org/10.1007/s13167-022-00285-2DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
tangled quest
4
quest post-covid-19
4
post-covid-19 infection-caused
4
infection-caused neuropathology
4
neuropathology nano-bio-medicine
4
nano-bio-medicine solve?
4
solve? covid-19-caused
4
covid-19-caused neurological
4
neurological problems
4

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

The transmembrane potential of plasma membranes and membrane-bound organelles plays a fundamental role in cellular functions such as signal transduction, ATP synthesis, and homeostasis. Rhodamine voltage reporters (RhoVRs), which operate based on the photoinduced electron transfer (PeT) mechanism, are non-invasive, small-molecule voltage sensors that can detect rapid voltage changes, with some of them specifically targeting the inner mitochondrial membrane. In this work, we conducted extensive molecular dynamics simulations and free-energy calculations to investigate the physicochemical properties governing the orientation as well as membrane permeation barriers of three RhoVRs.

View Article and Find Full Text PDF

Progress on animal speciation studies.

Yi Chuan

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences of Yunnan University, Kunming 650500, China.

Speciation research represents our thinking and exploration about how new species are generated and maintained, and it is one of the most important parts of evolutionary biology. Revealing new species formation modes, processes of reproductive isolation establishment and their intrinsic genetic mechanisms, are not only important issues and primary tasks in the field of speciation, but also the key clues for our understandings about the species diversity in nature. Here, by focusing on animal groups, we first introduced different definitions of species concept, and then summarized present research progress and important breakthroughs made in the speciation modes and molecular mechanism of reproductive isolation.

View Article and Find Full Text PDF

The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!