Land surface evapotranspiration (ET) is one of the main energy sources for atmospheric dynamics and a critical component of the local, regional, and global water cycles. Consequently, accurate measurement or estimation of ET is one of the most active topics in hydro-climatology research. With massive and spatially distributed observational data sets of land surface properties and environmental conditions being collected from the ground, airborne or space-borne platforms daily over the past few decades, many research teams have started to use big data science to advance the ET estimation methods. The Geostationary satellite Evapotranspiration and Drought (GET-D) product system was developed at the National Oceanic and Atmospheric Administration (NOAA) in 2016 to generate daily ET and drought maps operationally. The primary inputs of the current GET-D system are the thermal infrared (TIR) observations from NOAA GOES satellite series. Because of the cloud contamination to the TIR observations, the spatial coverage of the daily GET-D ET product has been severely impacted. Based on the most recent advances, we have tested a machine learning algorithm to estimate all-weather land surface temperature (LST) from TIR and microwave (MW) combined satellite observations. With the regression tree machine learning approach, we can combine the high accuracy and high spatial resolution of GOES TIR data with the better spatial coverage of passive microwave observations and LST simulations from a land surface model (LSM). The regression tree model combines the three LST data sources for both clear and cloudy days, which enables the GET-D system to derive an all-weather ET product. This paper reports how the all-weather LST and ET are generated in the upgraded GET-D system and provides an evaluation of these LST and ET estimates with ground measurements. The results demonstrate that the regression tree machine learning method is feasible and effective for generating daily ET under all weather conditions with satisfactory accuracy from the big volume of satellite observations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163788 | PMC |
http://dx.doi.org/10.3389/fdata.2022.768676 | DOI Listing |
Int J Med Inform
January 2025
School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:
Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:
Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!