Background: The current study sought to (1) describe a new classification approach for types of implementer behavior and (2) explore the implementer behavior change in response to tailored implementation facilitation based on the classifications.
Methods: A small-scale, cluster-randomized hybrid type III implementation trial was conducted in 38 early care and education classrooms that were part of the Together, We Inspire Smart Eating (WISE) program. WISE focuses on 4 evidence-based practices (EBPs), which are implemented by teachers to promote nutrition. External facilitators (N = 3) used a modified Rapid Assessment Procedure Informed Clinical Ethnography (RAPICE) to complete immersion (i.e., observations) and thematic content analyses of interviews to identify the characteristics of teachers' behavior at varying levels of implementation fidelity. Three key factors-attitudes toward the innovation, fidelity/adaptations, and influence-were identified that the research team used to classify teachers' implementation behavior. This process resulted in a novel classification approach. To assess the reliability of applying the classification approach, we assessed the percent agreement between the facilitators. Based on the teachers' classification, the research team developed a tailored facilitation response. To explore behavior change related to the tailored facilitation, change in fidelity and classification across the school year were evaluated.
Results: The classifications include (1) enthusiastic adopters (positive attitude, meeting fidelity targets, active influence), (2) over-adapting adopters (positive attitude, not meeting fidelity targets, active influence), (3) passive non-adopters (negative attitude, not meeting fidelity targets, passive influence), and (4) active non-adopters (negative attitudes, not meeting fidelity targets, active influence). The average percent agreement among the three facilitators for classification was 75%. Qualitative data support distinct patterns of perceptions across the classifications. A positive shift in classification was observed for 67% of cases between the mid-point and final classification. Finally, we generated an expanded classification approach to consider additional combinations of the three factors beyond those observed in this study.
Conclusions: Data from this study support the ability to apply the classification approach with moderate to high reliability and to use the approach to tailor facilitation toward improved implementation. Findings suggest the potential of our approach for wider application and potential to improve tailoring of implementation strategies such as facilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171954 | PMC |
http://dx.doi.org/10.1186/s43058-022-00307-0 | DOI Listing |
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease.
View Article and Find Full Text PDFCAZymes ( C arbohydrate A ctive En Zymes ) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are extremely important to research in human health, nutrition, gut microbiome, bioenergy, plant disease, and global carbon recycling. Current CAZyme annotation tools are all based on sequence similarity.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
Subcellular Spatial Transcriptomics (SST) represents an innovative technology enabling researchers to investigate gene expression at the subcellular level within tissues. To comprehend the spatial architecture of a given tissue, cell segmentation plays a crucial role in attributing the measured transcripts to individual cells. However, existing cell segmentation methods for SST datasets still face challenges in accurately distinguishing cell boundaries due to the varying characteristics of SST technologies.
View Article and Find Full Text PDFMicrobiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!