Pregnancy stands at the interface of mechanics and biology. The growing fetus continuously loads the maternal organs as circulating hormone levels surge, leading to significant changes in mechanical and hormonal cues during pregnancy. In response, maternal soft tissues undergo remarkable growth and remodeling to support the mother and baby for a healthy pregnancy. We focus on the maternal left ventricle, which increases its cardiac output and mass during pregnancy. This study develops a multiscale cardiac growth model for pregnancy to understand how mechanical and hormonal cues interact to drive this growth process. We coupled a cell signaling network model that predicts cell-level hypertrophy in response to hormones and stretch to a compartmental model of the rat heart and circulation that predicts organ-level growth in response to hemodynamic changes. We calibrated this multiscale model to data from experimental volume overload and hormonal infusions of angiotensin 2 (AngII), estrogen (E2), and progesterone (P4). We then validated the model's ability to capture interactions between inputs by comparing model predictions against published observations for the combinations of VO + E2 and AngII + E2. Finally, we simulated pregnancy-induced changes in hormones and hemodynamics to predict heart growth during pregnancy. Our model produced growth consistent with experimental data. Overall, our analysis suggests that the rise in P4 during the first half of gestation is an important contributor to heart growth during pregnancy. We conclude with suggestions for future experimental studies that will provide a better understanding of how hormonal and mechanical cues interact to drive pregnancy-induced heart growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-022-01589-y | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.
Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.
Am J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFCells
December 2024
School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Periodontology, Narsinhbhai Patel Dental College and Hospital, Sankalchand Patel University, Visnagar, Gujarat, India.
Aim: This study aims to evaluate the impact of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on pain, swelling, trismus, soft tissue healing and bone regeneration following mandibular third molar extraction.
Material And Methods: A systematic review was conducted from a period of January 2014 to June 2024 using PRISMA guidelines. The search strategy included databases such as Scopus, PubMed, Google Scholar, and Cochrane Central Register of Controlled Trials, using key terms related to "PRF", "PRP", oral surgery, and third molars.
J Exp Biol
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, 30625 Hanover, Germany.
Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!