AI Article Synopsis

  • Transcription dysregulation plays a significant role in bladder cancer, with a specific focus on the downregulation of the histone H4 transcription factor (HINFP), which is linked to poorer patient outcomes.
  • Inhibition of HINFP leads to DNA damage and cell senescence, resulting in reduced growth of bladder cancer cells; however, senescent cells release factors that can promote the invasion of non-senescent cells.
  • Histone deacetylase inhibitors (HDACis) can eliminate these senescent cells and may offer a therapeutic advantage for bladder cancer patients dealing with metastasis related to cell senescence.

Article Abstract

Transcription dysregulation is a salient characteristic of bladder cancer (BC), but no appropriate therapeutic target for it has been established. Here, we found that heterogeneous downregulation of histone H4 transcription factor (HINFP) was associated with senescence in BC tissues and that lower HINFP expression could predict an unfavorable outcome in BC patients. Knockout of HINFP transcriptionally inhibited H1F0 and H1FX to trigger DNA damage, consequently inducing cell senescence to repress the proliferation and growth of BC cells. However, the senescence-associated secretory phenotype, characterized by increases in MMP1/3, enhances the invasion and metastasis of non-senescent BC cells. Histone deacetylase inhibitors (HDACis) could efficiently eliminate the senescent cells induced by HINFP knockout to suppress the invasion and metastasis of BC cells. Our study suggests that HDACis, widely used in multiple cancer types in a clinical context, may also benefit BC patients with metastases induced by cell senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41388-022-02371-1DOI Listing

Publication Analysis

Top Keywords

senescence-associated secretory
8
secretory phenotype
8
bladder cancer
8
cell senescence
8
invasion metastasis
8
downregulation hinfp
4
hinfp induces
4
induces senescence-associated
4
phenotype promote
4
promote metastasis
4

Similar Publications

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

Nanodevice-Mediated Immune Cell Recruitment: Targeting Senescent Cells via MMP-3-Responsive CXCL12-Coated Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain.

Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype.

View Article and Find Full Text PDF

Diabetic vascular aging is driven by macrophage senescence, which propagates senescence-associated secretory phenotypes (SASP), exacerbating vascular dysfunction. This study utilized a type 2 diabetes mellitus (T2DM) mouse model induced by streptozotocin injection and a high-fat diet to investigate the role of STING in macrophage senescence. Vascular aging markers and senescent macrophages were assessed , while , high glucose treatment induced macrophage senescence, enhancing senescence in co-cultured vascular smooth muscle cells.

View Article and Find Full Text PDF

The interplay of senescence and MMPs in myocardial infarction: implications for cardiac aging and therapeutics.

Biogerontology

January 2025

Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Aging is associated with a marked increase in cardiovascular diseases, such as myocardial infarction (MI). Cellular senescence is also a crucial factor in the development of age-related MI. Matrix metalloproteinases (MMPs) interaction with cellular senescence is a critical determinant of MI development and outcomes, most notably in the aged heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!