Sepsis is a life-threatening organ dysfunction responsible for nearly 270,000 deaths annually in the United States alone. Nicotinamide adenine dinucleotide (NAD), an immunomodulator, can potentially treat sepsis; however, clinical application of NAD is hindered by its inability to be directly taken up by cells. To address this challenge, a family of nanoparticles (NPs) loaded with either NAD or the reduced form of NAD (NADH), hereafter NAD(H)-loaded NPs, were engineered to enable direct cellular transport and replenishment of NAD(H). The NAD(H)-loaded NPs improved cellular energy supply, suppressed inflammation and prevented inflammation-induced cell pyroptosis and apoptosis. Therefore, the NPs can help maintain immune homoeostasis and vascular function, two key factors in the pathogenesis of sepsis. The NAD(H)-loaded NPs demonstrated excellent therapeutic efficacies in treating endotoxemia and multidrug-resistant pathogen-induced bacteremia. In addition, the NAD(H)-loaded NPs prevented caecal ligation and puncture-induced multiorgan injury and improved outcomes of secondary Pseudomonas aeruginosa infections following caecal ligation and puncture, thus potentially leading to a highly innovative and translational approach to treat sepsis efficiently and safely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044491 | PMC |
http://dx.doi.org/10.1038/s41565-022-01137-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!