Background: Although the relationship between TP53 mutation, TP53 metabolism pathways, and tumorigenesis has been investigated, pan-cancer analysis of TP53 mutations and related metabolism pathways is not completely available in common types of human cancers. Thus, this study was going to represent TP53 mutant-related metabolism genes and pathways in a pan-cancer study and investigate the relationship between selected genes and drug resistance.
Methods: The DNA-seq data, RNA-seq data, and clinical information of 12 types of cancer were downloaded from the cancer genome atlas (TCGA) database. GSE70479 data were obtained from GEO database for validation of our TCGA data. To evaluate the survival rate of patients, GEPIA2 was applied. The CCLE and GDSC database were used to investigate drug resistance and sensitivity.
Results: Our findings indicated that TTN, MUC16, and TP53 were present in 12 types of cancer with high level of mutation frequency which abundance of TP53 mutations was higher. Mutant TP53-related (mTP53) pathways and genes including PKM, SLC16A3, HK2, PFKP, PHGDH, and CTSC were obtained from enrichment analysis and interestingly, top pathways were associated with metabolism including glycolysis and mTORC1 pathway. Our results showed the expression of some candidate genes correlated with immune markers, prognosis, and drug resistance.
Conclusions: Top mutant genes for 12 cancers were highlighted while TP53 was selected as top mutant gene, and metabolic genes associated with the TP53 mutation were identified that some of which are important in poor prognosis. In doing so, mutations in TP53 could run some metabolic pathways and drug resistance and sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2022.120650 | DOI Listing |
J Transl Med
January 2025
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!