Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrothermal carbonization allows material valorization and energy recovery from wet biomass waste. In this study, the hydrothermal treatment of dewatered waste-activated sludge (DWAS) was evaluated at several temperatures (170-230 °C) and reaction times (5-60 min) in an acid-free medium or in media such as citric acid or HCl (0.1-0.5 mol/L). Compared with the DWAS, an increase in the fixed carbon content (>45 wt%) and heating value (18.9-22.9 MJ/kg) was observed in the hydrochar; however, their ash content remained high, which is the main drawback hindering their direct use as a biofuel. The addition of acids during hydrothermal treatment favored the solubilization of N and P in the process water, which required strict control of the reaction time to avoid the recrystallization of P in the hydrochar. Under optimum operating conditions (230 °C, 15 min, 0.5 mol/L HCl), 94 % of P (as of PO) and almost 100 % of N (14 % as NH-N) present in the feedstock were concentrated in the process water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!