In the pars intermedia of the pituitary gland of the amphibian Xenopus laevis the level of mRNA encoding proopiomelanocortin (POMC), the precursor protein for alpha-melanophore-stimulating hormone (alpha-MSH), is shown to be dependent on physiological parameters. POMC mRNA levels in the pars intermedia of black-background-adapted Xenopus are much higher than those of white-adapted animals. These physiological changes in POMC mRNA levels are tissue-specific because they were not found in the pars distalis of the pituitary gland. Background transfer experiments revealed that modulation of POMC gene activity is much slower than changes in the secretion of alpha-MSH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(87)91407-0DOI Listing

Publication Analysis

Top Keywords

mrna levels
12
pituitary gland
12
gland amphibian
8
amphibian xenopus
8
xenopus laevis
8
pars intermedia
8
pomc mrna
8
physiologically-induced changes
4
changes proopiomelanocortin
4
mrna
4

Similar Publications

Objective: Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions.

View Article and Find Full Text PDF

Genes related to neural tube defects and glioblastoma.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.

There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.

View Article and Find Full Text PDF

Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples.

Drug Metab Dispos

January 2025

Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida. Electronic address:

Many factors cause interperson variability in the activity and expression of the cytochrome P450 (CYP) drug-metabolizing enzymes in the liver, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors are associated with CYP expression, with estrogen receptor α (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the 2 top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown.

View Article and Find Full Text PDF

Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during preclinical evaluation for DDIs. In vitro primary human hepatocytes (PHH) models are only applicable for short-term induction studies because of their rapid loss of metabolic function.

View Article and Find Full Text PDF

Cholic acid inhibits ovarian steroid hormone synthesis and follicular development through farnesoid X receptor signaling in mice.

Int J Biol Macromol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study investigated the effects of cholic acid (CA) on steroid hormone synthesis and follicular development in mouse ovaries and the regulatory mechanism of CA on the expression of steroidogenesis-related genes in granulosa cells. The mice were divided into control and CA groups, and serum and ovarian samples were collected after 1, 2, and 4 months of treatment, respectively. The results showed that CA treatment for 1, 2, and 4 months reduced ovarian weights, disrupted the estrous cycle, decreased the number of antral follicles and corpora lutea, and lowered the serum levels of progesterone and estradiol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!