A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep cerebellar stimulation enhances cognitive recovery after prefrontal traumatic brain injury in rodent. | LitMetric

Deep cerebellar stimulation enhances cognitive recovery after prefrontal traumatic brain injury in rodent.

Exp Neurol

Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Cleveland Clinic Neurological Institute, Cleveland, OH 44195, USA. Electronic address:

Published: September 2022

Functional outcome following traumatic brain injury (TBI) varies greatly, with approximately half of those who survive suffering long-term motor and cognitive deficits despite contemporary rehabilitation efforts. We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) enhances rehabilitation of motor deficits that result from brain injury. The objective of the present study was to evaluate the efficacy of LCN DBS on recovery from rodent TBI that uniquely models the injury location, chronicity and resultant cognitive symptoms observed in most human TBI patients. We used controlled cortical impact (CCI) to produce an injury that targeted the medial prefrontal cortex (mPFC-CCI) bilaterally, resulting in cognitive deficits. Unilateral LCN DBS electrode implantation was performed 6 weeks post-injury. Electrical stimulation started at week eight post-injury and continued for an additional 4 weeks. Cognition was evaluated using baited Y-maze, novel object recognition task and Barnes maze. Post-mortem analyses, including Western Blot and immunohistochemistry, were conducted to elucidate the cellular and molecular mechanisms of recovery. We found that mPFC-CCI produced significant cognitive deficits compared to pre-injury and naïve animals. Moreover, LCN DBS treatment significantly enhanced the long-term memory process and executive functions of applying strategy. Analyses of post-mortem tissues showed significantly greater expression of CaMKIIα, BDNF and p75 across perilesional cortex and higher expression of postsynaptic formations in LCN DBS-treated animals compared to untreated. Overall, these data suggest that LCN DBS is an effective treatment of cognitive deficits that result from TBI, possibly by activation of ascending, glutamatergic projections to thalamus and subsequent upregulation of thalamocortical activity that engages neuroplastic mechanisms for facilitation of functional re-organization. These results support a role for cerebellar output neuromodulation as a novel therapeutic approach to enhance rehabilitation for patients with chronic, post-TBI cognitive deficits that are unresponsive to traditional rehabilitative efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203848PMC
http://dx.doi.org/10.1016/j.expneurol.2022.114136DOI Listing

Publication Analysis

Top Keywords

cognitive deficits
20
lcn dbs
16
brain injury
12
traumatic brain
8
deficits result
8
cognitive
7
deficits
6
lcn
6
injury
5
dbs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!