We show here that potential barriers, applied to armchair nanoribbons, induce a hexagonal effective lattice, polarized in pseudospin on the sides of the barriers system, which has an effective unit cell greater than that of infinite graphene (pseudospin superstructure). This superstructure is better defined with the increase of the barrier potential, until a transport gap is generated. The superstructure, as well as the induced gap, are fingerprints of Kekulé distortion in graphene, so here we report an analogous effect in nanoribbons. These effects are associated with a breakdown of the chiral correlation. As a consequence, an effective zigzag edge is induced, which controls the electronic transport instead of the original armchair edge. With this, confinement effects (quasi-bound states) and couplings (splittings), both of chiral origin (decorrelation between chiral counterparts), are observed in the conductance as a function of the characteristics of the applied barriers and the number of barriers used. In general, the Dirac-like states in the nanoribbon can form quasi-bound states within potential barriers, which explains the Klein tunneling in armchair nanoribbons. On the other hand, for certain conditions of the barriers (widthand potential) and the energy () of the quasi-particle, quasi-bound states between the barriers can be generated. These two types of confinement would be generating tunneling peaks, which are mixed in conductance. In this work we make a systematic study of conductance as a function of,andfor quantum dots systems in graphene nanoribbons, to determine fingerprints of chirality: line shapes and behaviors, associated with each of these two contributions. With these fingerprints of chirality we can detect tunneling through states within the barriers and differentiate these from tunneling through states formed between the barriers or quantum dot. With all this we propose a technique, from conductance, to determine the spatial region that the state occupies, associated with each tunneling peak.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac7627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!