AI Article Synopsis

  • The study investigates how microglia, responding to ischemic injury, affect the changes in shape and gene expression of astrocytes after a stroke.
  • The researchers found that when astrocytes are exposed to both microglia and conditions of low oxygen and glucose, they tend to develop a specific type known as bipolar astrocytes, which overexpress the transcription factor Ascl1 and the Na/Ca exchanger NCX1.
  • Additionally, the presence of NCX1 is crucial for Ascl1 expression; silencing NCX1 stops Ascl1 from being expressed in both laboratory and post-stroke conditions, highlighting the importance of glial interactions in post-stroke recovery.

Article Abstract

The intricate glia interaction occurring after stroke strongly depend on the maintenance of intraglial ionic homeostasis. Among the several ionic channels and transporters, the plasmamembrane Na/Ca exchanger (NCX) represents a key player in maintaining astroglial Na and Ca homeostasis. Here, using a combined in vitro, in vivo and ex vivo experimental strategy we evaluated whether microglia responding to ischemic injury may influence the morphological and the transcriptional plasticity of post-ischemic astrocytes. Astrocyte plasticity was monitored by the expression of the transcription factor Acheate-scute like 1 (Ascl1), which plays a central role in the commitment of astrocytes towards the neuronal lineage. Furthermore, we explored the implication of NCX1 expression and activity in mediating Ascl1-dependent post-ischemic astrocyte remodeling. We demonstrated that: (a) in astrocytes co-cultured with microglia the exposure to oxygen and glucose deprivation followed by 7 days of reoxygenation induced a prevalence of bipolar astrocytes overexpressing Ascl1 and NCX1, whereas this did not occur in monocultured astrocytes; (b) the reoxygenation of anoxic astrocytes with the conditioned medium derived from IL-4 stimulated microglia strongly elicited the astrocytic co-expression of Ascl1 and NCX1; (c) Ascl1 expression in anoxic astrocytes was dependenton NCX1 since its silencing prevented Ascl1 expression both in in vitro and in post-ischemic ex vivo experimental conditions. Collectively, the results of our study support the idea that, after brain ischemia, astrocyte-microglia crosstalk can influence astrocytic morphology and its Ascl1 expression. This phenomenon is strictly dependent on ischemia-induced increase of NCX1 which in turn induces Ascl1 overexpression possibly through astrocytic Ca elevation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceca.2022.102608DOI Listing

Publication Analysis

Top Keywords

ascl1 expression
12
na/ca exchanger
8
ascl1
8
astrocytes
8
astrocytes neuronal
8
neuronal lineage
8
vivo experimental
8
ascl1 ncx1
8
anoxic astrocytes
8
expression
5

Similar Publications

A novel molecular classification for small cell lung cancer (SCLC) has been established utilizing the transcription factors achaete-scute homologue 1 (ASCL1), neurogenic differentiation factor 1 (NeuroD1), POU class 2 homeobox 3 (POU2F3), and yes-associated protein 1 (YAP1). This classification was predicated on the transcription factors. Conversely, there is a paucity of information regarding the distribution of these markers in other subtypes of pulmonary neuroendocrine tumors (PNET).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

Background: Early-onset Alzheimer's disease (EOAD) is a complex disease that occurs at an early age at onset (AAO) before 65 years, constituting 5-6% of all AD cases and remains poorly understood. Patient-derived induced pluripotent stem cells (iPSCs) have been used to model different forms of EOAD that display heterogeneous disease mechanisms.

Method: We examined iPSC-derived neurons from both familial EOAD harboring mutations in PSEN1 , PSEN2, and APP and non-familial EOAD patients at an early AAO.

View Article and Find Full Text PDF

Assessment of targets of antibody drug conjugates in SCLC.

NPJ Precis Oncol

January 2025

Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, USA.

Antibody-drug conjugate (ADC) therapy has transformed treatment for several solid tumors, including small cell lung cancer (SCLC). However, significant challenges remain, including systemic toxicity, acquired resistance, and the lack of reliable biomarkers for patient selection. To enhance the effectiveness of ADC therapies in SCLC, we focused on target selection in this study by investigating the expression of ADC targets - SEZ6, DLL3, CD276, and TACSTD2 - in cell lines and patient samples.

View Article and Find Full Text PDF

Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ).

View Article and Find Full Text PDF

Introduction: Recent advances in the subclassification of small cell lung carcinomas (SCLCs) may help to overcome the unmet need for targeted therapies and improve survival. However, limited information is available on how the expression of the subtype markers changes during tumour progression. Our study aimed to compare the expression of these markers in primary and brain metastatic SCLCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!