Exposure to zinc induces lysosomal-mitochondrial axis-mediated apoptosis in PK-15 cells.

Ecotoxicol Environ Saf

Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China. Electronic address:

Published: August 2022

Zinc (Zn), a kind of metallic element, can cause poisonous effects on host physiology when its excess exposure. Lysosomes and mitochondria are the toxic targets of heavy metals, and the lysosomal-mitochondrial axis is also verified to take part in apoptosis, but the related underlying mechanisms in Zn-induced cytotoxicity remain undefined. Here, we identified that excess Zn could cause cell damage in PK-15 cells accompanied by the lysosomal and mitochondrial dysfunction, with the evidence by the elevated levels of cathepsin B/D (CTSB/CTSD) in cytoplasm and decrease of Lyso-Tracker Red signal, red fluorescence intensity of AO staining, mitochondrial complex enzyme activities and ATP production. Additionally, the number of Annexin V/PI-stained cells, apoptosis-related genes (Bax, Bid, Bak1, Caspase-9, and Caspase-3) and proteins levels of Bax, Bak1, Caspase-9, cleaved Caspase-3 and cytoplasmic Cyt C were signally elevated under Zn exposure, while the protein levels of Bcl2 and mitochondrial Cyt C were observably decreased. Importantly, Pepstatin A (the activity inhibitor of CTSD) and RNA interference of CTSD (si-CTSD) was used to reduce the release of lysosomal CTSD to the cytoplasm, which could signally alleviated Zn-induced mitochondrial damage and apoptosis. In summary, these results suggested that Zn could induced lysosomal and mitochondrial dysfunction in PK-15 cells, and the CTSD played an important role in Zn-induced lysosomal-mitochondrial axis-mediated apoptosis. Our results provided a new insight in Zn-induced toxicology, which for protecting the ecological environment and public health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113716DOI Listing

Publication Analysis

Top Keywords

pk-15 cells
12
lysosomal-mitochondrial axis-mediated
8
axis-mediated apoptosis
8
lysosomal mitochondrial
8
mitochondrial dysfunction
8
bak1 caspase-9
8
mitochondrial
5
exposure zinc
4
zinc induces
4
induces lysosomal-mitochondrial
4

Similar Publications

Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.

View Article and Find Full Text PDF

As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection.

View Article and Find Full Text PDF

Histone H2B lysine lactylation modulates the NF-κB response via KPNA2 during CSFV infection.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China. Electronic address:

Histone lysine lactylation (Kla) has recently been reported to participate in various biological processes, regulating transcription, inflammation, and immune-related diseases. However, the mechanism of histone Kla in innate immunity and viral infection remains largely unknown. Here, we observed fluorescent Kla signals in all four histones (H2A, H2B, H3, and H4) in PK-15 cells.

View Article and Find Full Text PDF

IFN-mediated lncRNA-ISL promotes SVV infection through G1P3.

Vet Microbiol

December 2024

Chongqing Academy of Animal Sciences, Chongqing 402460, China; Southwest University, College of Veterinary Medicine, Chongqing 400715, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China. Electronic address:

lncRNAs play important regulatory roles in almost every aspect of physiological processes. However, the mechanisms by which animal-encoded lncRNAs regulate the interaction of viral infection with host antiviral immunity are unknown. To explore the mechanisms of lncRNA regulation of SVV infection and interferon responses.

View Article and Find Full Text PDF

The effect and mechanism of sanguinarine against PCV2 based on the analysis of network pharmacology and TMT quantitative proteomics.

Int J Biol Macromol

January 2025

Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China. Electronic address:

Porcine circovirus type 2 (PCV2) is highly prevalent in nature and serves as the primary pathogen responsible for porcine circovirus-associated disease (PCVD/PCVAD), posing a significant threat to pig production. Currently, vaccination alone could not provide the complete protection for PCV2 infection. The active ingredients of traditional Chinese medicine have shown a positive effect in combating viral infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!