Riverine transport dynamics of PBDEs and OPFRs within a typical e-waste recycling zone: Implications for sink-source interconversion.

Water Res

Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.

Published: July 2022

Despite ample evidence on spreading of e-waste derived hazardous materials, riverine transport of organic contaminants from e-waste recycling zones to surrounding areas has not been evaluated. To address this issue, passive and grab sampling methods were used to assess sediment-water diffusion and horizontal transport of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardant (OPFRs) at upstream and downstream sites of two rivers in a typical e-waste recycling zone. Sediment acted as a source of BDE-17 with fluxes of 0.007-0.04 ng m d at all sampling sites. BDE-47 and BDE-99 reached equilibrium between overlying water and sediment porewater. Sediment interconverted from a sink at the upstream site to a source of OPFRs at the downstream site with a flux varying between -7.3 and 234 ng m d. The amounts of OPFRs (11-45 g d) via horizontal riverine transport were greater than those of PBDEs (0.68-2 g d). The vertical sediment-water diffusion of PBDEs and OPFRs was not significant compared to horizontal riverine transport. The annual riverine outputs of PBDEs and OPFRs from the downstream sites were 250-330 g and 12,000-16,500 g, respectively, indicating the significance of riverine transport of organic contaminants from e-waste recycling zones to surrounding areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118677DOI Listing

Publication Analysis

Top Keywords

riverine transport
20
e-waste recycling
16
pbdes opfrs
12
typical e-waste
8
recycling zone
8
transport organic
8
organic contaminants
8
contaminants e-waste
8
recycling zones
8
zones surrounding
8

Similar Publications

Spatial and temporal (annual and decadal) trends of metal(loid) concentrations and loads in an acid mine drainage-affected river.

Sci Total Environ

January 2025

Camborne School of Mines, Department of Earth and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK; Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK.

Acid mine drainage (AMD) is a worldwide problem that degrades river systems and is difficult and expensive to remediate. To protect affected catchments, it is vital to understand the behaviour of AMD-related metal(loid) contaminants as a function of space and time. To address this, the sources, loads and transport mechanisms of arsenic (As), copper (Cu), zinc (Zn), iron (Fe) and sulfur (S) in a representative AMD-affected catchment (the Carnon River in Cornwall, UK) were determined over a 12-month sampling period and with 22 years of monitoring data collected by the Environment Agency (England) (EA).

View Article and Find Full Text PDF

A Comprehensive Modeling of Microplastic Emission from Wastewater Treatment Plants to the Sea via Rivers in China.

Environ Sci Technol

January 2025

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Wastewater treatment plants (WWTPs) are significant sources of microplastic (MP) emissions. In order to quantify the potential MP emission from WWTPs, a database of more than 10,000 WWTPs in China with an estimated MP emission rate was built. The MP riverine retention after emission was also estimated based on Stokes' law for both fragments and fibers.

View Article and Find Full Text PDF

Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.

View Article and Find Full Text PDF

Redistribution of dissolved inorganic nitrogen loading and transport in global rivers via surface water regulation.

Sci Total Environ

January 2025

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

Surface water (SW) regulation, including reservoir regulation and surface water use, alters the soil-river hydrological processes and then influences the dissolved inorganic nitrogen (DIN) transport from rivers to oceans. However, global response of the DIN transfer to such human activity has not been well investigated. Therefore, in this study, we have taken advantage of a recently-developed land surface model to show the effects of SW regulation on DIN loading and transport in global major rivers.

View Article and Find Full Text PDF

The transport, distribution, and budget of anthropogenic I in the Bohai and North Yellow Seas, China.

J Hazard Mater

January 2025

State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:

The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!