Enhanced fluorescent iron oxide quantum dots for rapid and interference free recognizing lysine in dairy products.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan. Electronic address:

Published: October 2022

In this work, a simple, easy and selective method for sensing lysine in an acidic medium was developed based on fluorescent iron oxide quantum dots (IO QDs). IO QDs using the hydrothermal method were prepared with different conditions (concentration of NPs, amount of citric acid, heating time, heating temperature, and total volume in the hydrothermal reactor) where iron oxide nanoparticles (IO NPs) were used as the starting materials. TEM, FTIR, UV-Vis Spectrometry, fluorescence spectrometry, Powder XRD, VSM were used to characterize the as-prepared IO QDs. The surface of the IO QDs contained -OH, -COO, and other functional groups that acted as a bridge to bind the IO QDs nanoprobe with the surrounding analytes. Under acidic conditions (pH 3.0), IO QDs exhibited a rapid and interference-free fluorescence enhancement behavior after adding lysine within 2 min at room temperature, whereas other amino acids had no effect on IO QDs fluorescence. Therefore, the IO QDs prepared in this study have shown potential in lysine sensing applications. The results showed that the relative FL intensity was linear with lysine concentration in the range of 1-100 μM and had a detection limit of 0.66 μM. This proposed method has high selectivity for lysine over other amino acids, and the developed methods were used in real sample with good recoveries. Under relatively acidic conditions, a specific and fast lysine interaction was observed, resulting in the successful of IO QDs as the fluorescent probe for rapid and interference-free lysine assessment in dairy products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121453DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
qds
9
fluorescent iron
8
oxide quantum
8
quantum dots
8
lysine
8
dairy products
8
acidic conditions
8
rapid interference-free
8
amino acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!