Detection of Chemical Compositions at Nanodroplet Surfaces and In-Nanodroplet Phases.

J Phys Chem A

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States.

Published: June 2022

Small-volume nanodroplets play an increasingly common role in chemistry and biology. Such nanodroplets are believed to have unique chemical and physical properties at the interface between a droplet and its surrounding medium, however, they are underexamined. In this study, we present the novel technique of vibrational sum frequency scattering (VSFS) spectroscopy as an interface-specific, high-performance method for the investigation of nanodroplets with sub-micron radii; as well as the droplet bulk through simultaneous hyper-Raman scattering (HRS) spectroscopy. We use laboratory-generated nanodroplets from aqueous alcohol solutions to demonstrate this technique's ability to separate the vibrational phenomena which take place at droplet surfaces from the underlying bulk phase. In addition, we systemically examine interfacial spectra of nanodroplets containing methanol, ethanol, 1-propanol, and 1-butanol through VSFS. Furthermore, we demonstrate interfacial differences between such nanodroplets and their analogous planar surfaces. The sensitivity of this technique to probe droplet surfaces with few-particle density at standard conditions validates VSFS as an analytical technique for the investigation of small nanodroplets, providing breakthrough information about these species of ever-increasing relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c03346DOI Listing

Publication Analysis

Top Keywords

droplet surfaces
8
nanodroplets
7
detection chemical
4
chemical compositions
4
compositions nanodroplet
4
surfaces
4
nanodroplet surfaces
4
surfaces in-nanodroplet
4
in-nanodroplet phases
4
phases small-volume
4

Similar Publications

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Evaluating the Potential of Microdroplet Flow in Two-Phase Biocatalysis: A Systematic Study.

ACS Appl Mater Interfaces

January 2025

Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, DE-38124 Braunschweig, Germany.

Two-phase biocatalysis in batch reactions often suffers from inefficient mass transfer, inconsistent reaction conditions, and enzyme inactivation issues. Microfluidics offer uniform and controlled environments ensuring better reproducibility and enable efficient, parallel processing of many small-scale reactions, making biocatalysis more scalable. In particular, the use of microfluidic droplets can increase the interfacial area between the two phases and can therefore also increase reaction rates.

View Article and Find Full Text PDF

Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.

View Article and Find Full Text PDF

Comparative Study of Polymer Globules and Liquid Droplets in Poor Solvents: Effects of Cosolvents and Solvent Quality.

J Phys Chem B

January 2025

Department of Chemical Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382055, India.

We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!