The rapid emergence and global spread of the COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its subsequent mutated strains has caused unprecedented health, economic, and social devastation. Respiratory viruses such as SARS-CoV-2 can be transmitted through both direct and indirect channels, including aerosol respiratory droplets, contamination of inanimate surfaces (fomites), and direct person-to-person contact. Current methods of virus inactivation on surfaces include chemicals and biocides, and while effective, continuous and repetitive cleaning of all surfaces is not always viable. Recent work in the field of biomaterials engineering has established the antibacterial effects of hydrothermally synthesized TiO nanostructured surfaces against both Gram-negative and -positive bacteria. The current study investigates the effectiveness of said TiO nanostructured surfaces against two enveloped human coronaviruses, SARS-CoV-2 and HCoV-NL63, and nonenveloped HRV-16 for surface-based inactivation. Results show that structured surfaces reduced infectious viral loads of SARS-CoV-2 (5 log), HCoV-NL63 (3 log), and HRV-16 (4 log) after 5 h, compared to nonstructured and tissue culture plastic control surfaces. Interestingly, infectious virus remained present on control tissue culture plastic after 7 h exposure. These encouraging results establish the potential use of nanostructured surfaces to reduce the transmission and spread of both enveloped and nonenveloped respiratory viruses, by reducing their infectious period on a surface. The dual antiviral and antibacterial properties of these surfaces support their potential application in a wide variety of settings such as hospitals and healthcare environments, public transport and community hubs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199440 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.2c00326 | DOI Listing |
Vet Res Commun
January 2025
Brooksco Dairy, L.L.C. Quitman, Quitman, 31643-9403, GA, USA.
The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.
View Article and Find Full Text PDFSci Rep
January 2025
Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
Community-acquired pneumonia (CAP) has a significant impact on public health, especially in light of the recent SARS-CoV-2 pandemic. To enhance disease characterization and improve understanding of the underlying mechanisms, a comprehensive analysis of the plasma lipidome, metabolome and proteome was conducted in patients with viral and bacterial CAP infections, including those induced by SARS-CoV-2. Lipidomic, metabolomic and proteomic profiling were conducted on plasma samples of 69 patients suffering either from viral or bacterial CAP.
View Article and Find Full Text PDFArch Bronconeumol
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; University of Barcelona, Barcelona, Spain; Ciber de Enfermedades Respiratorias (Ciberes), Barcelona, Spain. Electronic address:
Background: Polymicrobial pneumonia is a concern for clinicians due to its association with increased disease severity. Determining the prevalence of polymicrobial pneumonia and identifying patients who have an increased risk of this aetiology is important for the management of CAP patients. Here we describe the clinical characteristics and outcomes of adult hospitalized patients with CAP, and identify the risk factors related to polymicrobial pneumonia and specifically to 30-day mortality.
View Article and Find Full Text PDFTrends Microbiol
January 2025
Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Beijing Institute of Radiation Medicine, Beijing, P.R. China.
From the severe acute respiratory syndrome coronavirus in 2003 to the severe acute respiratory syndrome coronavirus 2 in 2019, coronavirus has seriously threatened human health. Electromagnetic waves not only own high penetration and low pollution but also can physically resonate with the virus. Several studies have demonstrated that electromagnetic waves can inactivate viruses efficiently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!