Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods. In this Critical Review, we first describe nucleation mechanisms and crystal growth theories, which are fundamental to understanding inorganic scale formation during membrane desalination. We, then, discuss the key mechanisms and factors that govern membrane scaling, including membrane properties, such as surface roughness, charge, and functionality, as well as feedwater characteristics, such as pH, temperature, and ionic strength. We follow with a critical review of current characterization techniques for both homogeneous and heterogeneous nucleation, focusing on the strengths and limitations of each technique to elucidate scale-inducing mechanisms, observe actual crystal growth, and analyze the outcome of scaling behaviors of desalination membranes. We conclude with an outlook on research needs and future research directions to provide guidelines for scale mitigation in water treatment and desalination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c01858 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth and Planetary Sciences, Yale University, New Haven 06511.
The origin of complex life and the evolution of terrestrial ecosystems are fundamental aspects of the natural history on Earth. Here, we present evidence for a protracted stabilization of the Earth's ozone layer. The destruction of atmospheric ozone today is inherently linked to the cycling of marine and atmospheric iodine.
View Article and Find Full Text PDFRSC Mechanochem
December 2024
Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
Ball-milling of addition polymers such as polyolefins, polystyrene and polyacrylates can be used for depolymerization to obtain the respective monomers. However, absolute yields are typically low, especially from polyolefins which are notoriously difficult to depolymerize. To increase the viability of ball milling as a recycling technique, the effect of milling parameters on small hydrocarbon and monomer yields has to be understood.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
UNIHAVRE, FR 3038 CNRS, URCOM, Normandie Univ., Le Havre 76600, France. Electronic address:
The crustacean cuticle is a composite material acting as a shell, but also linked with other physiological functions as respiration, locomotion or reproduction. The present study aimed to characterize for the first time the cuticle properties of the marine prawn Palaemon serratus using thermal (TGA) and chemical (FTIR, ICP-AES) techniques. The use of native lyophilized cutiles also enabled to estimate the complexity of the cuticle structure of P.
View Article and Find Full Text PDFNat Commun
January 2025
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!