We study the effects of the optical binding force on wavelength sized colloidal particles free to move in a counter-propagating beam. This work is motivated by the concept of using optical binding to direct the assembly of large numbers of colloidal particles; previous work has used small numbers of particles and/or 1D or 2D restricted geometries. Utilizing a novel experimental scheme, we describe the general static and dynamic self-organization behaviors for 20-100 particles free to move in 3-dimensional space. We observe the self-organization of the colloids into large optically bound structures along with the formation of driven particle clusters. Furthermore we show that the structure and behavior of these optically bound systems can be tuned using the refractive index of the particles and properties of the binding light. In particular, we show that the driven behavior originates from -body interactions, which has significant implications for future work on optically bound clusters of more than 2 particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm00393g | DOI Listing |
Using the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFHeliyon
January 2025
The First Affiliated Hospital of Chongqing Medical University, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, PR China.
Background: Several studies suggested the genetic association between IL10RA variants and susceptibility to Behcet's disease (BD). However, the precise mechanism of the association is still unknown. The purpose of this study was to investigate the mechanism underlying the genetic associations between IL10RA polymorphisms and the risk of BD.
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFNature
January 2025
Changping Laboratory, Beijing, The People's Republic of China.
The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs). Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants, establishing a foundation for mitochondrial disease mouse models.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departmento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:
Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!