Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Globally, breast cancer is one of the leading invasive cancers in women. Moreover, the use of chemotherapeutic drugs for treating cancer produces toxic side effects and has even led to drug resistance. This research paper focuses on targeting three heat shock proteins belonging to 70 kDa subfamily (HSP70s), predominantly, Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 (Stress Inducible Heat Shock Protein 70) involved in breast cancer malignancy using different phytocompounds of onion. Phytocompounds of onion (ligands) obtained from different literature sources and the conventional drug, Tamoxifen (standard ligand), used for treating breast cancer are docked against three HSP70s (target proteins) through molecular docking. Molecular docking helps to determine protein-ligand interactions with minimum binding affinity. A comparative analysis revealed that fourteen phytocompounds of onion have lesser binding affinity and formed more stable complexes with the target proteins compared to that of the conventional drug. This evidence can be used and confirmed further through in vitro (cell culture) and in vivo (animal models) studies, and then, these phytocompounds can be modulated efficiently as potential therapeutics for treating breast cancer with less or nearly no side effects. In Silico work represented here targets three heat shock proteins belonging to 70 kDa subfamily (HSP70s)-Mortalin, Binding Immunoglobulin Protein (BiP), and Stress Inducible HSP70 involved in breast cancer malignancy using different phytocompounds of onion to identify potential phytocompounds that can treat breast cancer with nearly no side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-022-04016-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!