We present a comparative genetic analysis of the quantitative trait loci underlying resistance to warm water columnaris disease in 2 farmed rainbow trout (Oncorhynchus mykiss) populations. We provide evidence for the conservation of a major quantitative trait loci on Omy03, and the putative role played by a chromosomal rearrangement on Omy05. A total of 3,962 individuals from the 2 populations experienced a natural Flavobacterium columnare outbreak. Data for 25,823 genome-wide SNPs were generated for both cases (fatalities) and controls (survivors). FST and pairwise additive genetic relationships suggest that, despite being currently kept as separate broodstocks, the 2 populations are closely related. Association analyses identified a major quantitative trait loci on chromosome Omy03 and a second smaller quantitative trait loci on Omy05. Quantitative trait loci on Omy03 consistently explained 3-11% of genetic variation in both populations, whereas quantitative trait loci on Omy05 showed different degree of association across populations and sexes. The quantitative trait loci on Omy05 was found within a naturally occurring, 54.84 cM long inversion which is easy to tag due to a strong linkage disequilibrium between the 375 tagging SNPs. The ancestral haplotype on Omy05 was associated with decreased mortality. Genetic correlation between mortality in the 2 populations was estimated at 0.64, implying that the genetic basis of resistance is partly similar in the 2 populations. Our quantitative trait loci validation identifies markers that can be potentially used to complement breeding value evaluations to increase resistance against columnaris disease, and help to mitigate effects of climate change on aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339330PMC
http://dx.doi.org/10.1093/g3journal/jkac137DOI Listing

Publication Analysis

Top Keywords

quantitative trait
32
trait loci
32
columnaris disease
12
loci omy05
12
resistance columnaris
8
rainbow trout
8
populations
8
mykiss populations
8
quantitative
8
trait
8

Similar Publications

Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.

Theor Appl Genet

January 2025

College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.

QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.

View Article and Find Full Text PDF

hemocyanin as a novel natural immunostimulant in mammals.

Front Immunol

January 2025

Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.

Introduction: Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from (PcH), an invasive south American freshwater snail.

View Article and Find Full Text PDF

Background: Several studies suggested the genetic association between IL10RA variants and susceptibility to Behcet's disease (BD). However, the precise mechanism of the association is still unknown. The purpose of this study was to investigate the mechanism underlying the genetic associations between IL10RA polymorphisms and the risk of BD.

View Article and Find Full Text PDF

Background: Hypertension (HT) is the most prevalent risk factor for cardiovascular disease (CVD) worldwide. Despite being a highly heritable trait, the underlying mechanisms of HT remain elusive due to its complex genetic architecture. Discovering disease-associated proteins with causal genetic evidence offers a potential strategy for identifying therapeutic targets for HT.

View Article and Find Full Text PDF

Background: To elucidate the genetic and molecular mechanisms underlying psoriasis by employing an integrative multi-omics approach, using summary-data-based Mendelian randomization (SMR) to infer causal relationships among DNA methylation, gene expression, and protein levels in relation to psoriasis risk.

Methods: We conducted SMR analyses integrating genome-wide association study (GWAS) summary statistics with methylation quantitative trait loci (mQTL), expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data. Publicly available datasets were utilized, including psoriasis GWAS data from the European Molecular Biology Laboratory-European Bioinformatics Institute and the UK Biobank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!