T-cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematologic disease that accounts for 15% of childhood and 25% of adult ALL cases. Triptolide (TPL) is an active component of Tripterygium wilfordii and was recently discovered to suppress the growth of some cancers, including ALL, but the underlying mechanism has yet to be elucidated. Dysfunction of the Wnt signalling pathway has been reported to be an important event in the pathogenesis of T-ALL. In this study, we investigated the effects of TPL on the Wnt pathway and found that it suppressed the expression of , C-MYC and β-catenin in T-ALL cell lines. Then, we indicated that TPL induced the expression of Wnt pathway antagonists, including , , and , in T-ALL cells. Further analysis indicated that TPL induced the demethylation of these genes, which may be related to the inhibited expression of methyltransferases DNMT1 and DNMT3a. In conclusion, our results suggest that TPL inhibits T-ALL by inhibiting aberrant epigenetic events in dysregulated Wnt signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1120009X.2022.2082347DOI Listing

Publication Analysis

Top Keywords

wnt signalling
12
t-cell acute
8
acute lymphoblastic
8
lymphoblastic leukaemia
8
aberrant epigenetic
8
epigenetic events
8
signalling pathway
8
wnt pathway
8
indicated tpl
8
tpl induced
8

Similar Publications

Oral Cancer Stem Cells: A Comprehensive Review of Key Drivers of Treatment Resistance and Tumor Recurrence.

Eur J Pharmacol

January 2025

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:

Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse.

View Article and Find Full Text PDF

Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:

Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA.

View Article and Find Full Text PDF

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.

Curr Cancer Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.

View Article and Find Full Text PDF

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!