NMR resonance assignments of the DNA binding domain of mouse Junctophilin-2.

Biomol NMR Assign

Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, B291, CBRB, 285 Newton Road, Iowa City, IA, 52242, USA.

Published: October 2022

Junctophilin-2 (JP2) is a critical structural protein in the heart by stabilizing junctional membrane complexes between the plasma membrane and sarcoplasmic reticula responsible for precise Ca regulation. Such complexes are essential for efficient cardiomyocyte contraction and adaptation to altered cardiac workload conditions. Mutations in the JPH2 gene that encodes JP2 are associated with inherited cardiomyopathies and arrhythmias, and disruption of JP2 function is lethal. Interestingly, cardiac stress promotes the proteolytic cleavage of JP2 that triggers the translocation of its N-terminal fragment into the nucleus to repress maladaptive gene transcription. We previously found that the central region of JP2 is responsible for mediating direct DNA binding interactions. Recent structural studies indicate that this region serves as a structural role in the cytosolic form of JP2 by folding into a single continuous α-helix. However, the structural basis of how this DNA-binding domain interacts with DNA is not known. Here, we report the backbone and sidechain assignments of the DNA-binding domain (residues 331-413) of mouse JP2. These assignments reveal that the JP2 DNA binding domain is an intrinsically disordered protein and contains two α-helices located in the C-terminal portion of the protein. Moreover, this protein binds to DNA in a similar manner to that shown previously by electrophoretic mobility shift assays. Therefore, these assignments provide a framework for further structural studies into the interaction of this JP2 domain with DNA for the elucidation of transcriptional regulation of stress-responsive genes as well as its role in the stabilization of junctional membrane complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394741PMC
http://dx.doi.org/10.1007/s12104-022-10091-6DOI Listing

Publication Analysis

Top Keywords

dna binding
12
jp2
9
binding domain
8
junctional membrane
8
membrane complexes
8
structural studies
8
dna-binding domain
8
dna
6
domain
5
structural
5

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!