A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of Detection of Diabetic Retinopathy Using Harris Hawks Optimization with Deep Learning Model. | LitMetric

In today's world, diabetic retinopathy is a very severe health issue, which is affecting many humans of different age groups. Due to the high levels of blood sugar, the minuscule blood vessels in the retina may get damaged in no time and further may lead to retinal detachment and even sometimes lead to glaucoma blindness. If diabetic retinopathy can be diagnosed at the early stages, then many of the affected people will not be losing their vision and also human lives can be saved. Several machine learning and deep learning methods have been applied on the available data sets of diabetic retinopathy, but they were unable to provide the better results in terms of accuracy in preprocessing and optimizing the classification and feature extraction process. To overcome the issues like feature extraction and optimization in the existing systems, we have considered the Diabetic Retinopathy Debrecen Data Set from the UCI machine learning repository and designed a deep learning model with principal component analysis (PCA) for dimensionality reduction, and to extract the most important features, Harris hawks optimization algorithm is used further to optimize the classification and feature extraction process. The results shown by the deep learning model with respect to specificity, precision, accuracy, and recall are very much satisfactory compared to the existing systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162819PMC
http://dx.doi.org/10.1155/2022/8512469DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
20
deep learning
16
learning model
12
feature extraction
12
harris hawks
8
hawks optimization
8
machine learning
8
classification feature
8
extraction process
8
existing systems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!