Defining inkjet printing conditions of superconducting cuprate films through machine learning.

J Mater Chem C Mater

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB 08193 Bellaterra Catalonia Spain +34 93 580 18 53.

Published: May 2022

The design and optimization of new processing approaches for the development of rare earth cuprate (REBCO) high temperature superconductors is required to increase their cost-effective fabrication and promote market implementation. The exploration of a broad range of parameters enabled by these methods is the ideal scenario for a new set of high-throughput experimentation (HTE) and data-driven tools based on machine learning (ML) algorithms that are envisaged to speed up this optimization in a low-cost and efficient manner compatible with industrialization. In this work, we developed a data-driven methodology that allows us to analyze and optimize the inkjet printing (IJP) deposition process of REBCO precursor solutions. A dataset containing 231 samples was used to build ML models. Linear and tree-based (Random Forest, AdaBoost and Gradient Boosting) regression algorithms were compared, reaching performances above 87%. Model interpretation using Shapley Additive Explanations (SHAP) revealed the most important variables for each study. We could determine that to ensure homogeneous CSD films of 1 micron thickness without cracks after the pyrolysis, we need average drop volumes of 190-210 pl, and no. of drops between 5000 and 6000, delivering a total volume deposited close to 1 μl.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069570PMC
http://dx.doi.org/10.1039/d1tc05913kDOI Listing

Publication Analysis

Top Keywords

inkjet printing
8
machine learning
8
defining inkjet
4
printing conditions
4
conditions superconducting
4
superconducting cuprate
4
cuprate films
4
films machine
4
learning design
4
design optimization
4

Similar Publications

Fringe Texture Driven Droplet Measurement End-to-End Network Based on Physics Aberrations Restoration of Coherence Scanning Interferometry.

Micromachines (Basel)

December 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy.

View Article and Find Full Text PDF

Print-Light-Synthesis of ruthenium oxide thin film electrodes for electrochemical sensing applications.

Bioelectrochemistry

January 2025

University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:

Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.

View Article and Find Full Text PDF

The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.

View Article and Find Full Text PDF

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!