Introduction: The fast pandemic of coronavirus disease 2019 (COVID-19) has challenged clinicians with many uncertainties and ambiguities regarding disease outcomes and complications. To deal with these uncertainties, our study aimed to develop and evaluate several artificial neural networks (ANNs) to predict the mortality risk in hospitalized COVID-19 patients.
Material And Methods: The data of 1710 hospitalized COVID-19 patients were used in this retrospective and developmental study. First, a Chi-square test (P < 0.05), Eta coefficient (η > 0.4), and binary logistics regression (BLR) analysis were performed to determine the factors affecting COVID-19 mortality. Then, using the selected variables, two types of feed-forward (FF) models, including the back-propagation (BP) and distributed time delay (DTD) were trained. The models' performance was assessed using mean squared error (MSE), error histogram (EH), and area under the ROC curve (AUC-ROC) metrics.
Results: After applying the univariate and multivariate analysis, 13 variables were selected as important features in predicting COVID-19 mortality at P < 0.05. A comparison of the two ANN architectures using the MSE showed that the BP-ANN (validation error: 0.067, most of the classified samples having 0.049 and 0.05 error rates, and AUC-ROC: 0.888) was the best model.
Conclusions: Our findings show the acceptable performance of ANN for predicting the risk of mortality in hospitalized COVID-19 patients. Application of the developed ANN-based CDSS in a real clinical environment will improve patient safety and reduce disease severity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148440 | PMC |
http://dx.doi.org/10.1016/j.imu.2022.100983 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!