A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Dynamics Analysis of 6H-SiC Subsurface Damage by Nanofriction. | LitMetric

Molecular Dynamics Analysis of 6H-SiC Subsurface Damage by Nanofriction.

ACS Omega

School of Mechanical and Electronic Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China.

Published: May 2022

To investigate the subsurface damage of 6H-SiC nanofriction, this paper uses molecular dynamics analysis to analyze the loading process of friction 6H-SiC surfaces, thus providing an in-depth analysis of the formation mechanism of subsurface damage from microscopic crystal structure deformation characteristics. This paper constructs a diamond friction 6H-SiC nanomodel, combining the radial distribution function, dislocation extraction method, and diamond identification method with experimental analysis to verify the dislocation evolution process, stress distribution, and crack extension to investigate the subsurface damage mechanism. During the friction process, the kinetic and potential energies as well as the temperature of the 6H-SiC workpiece basically tend to rise, accompanied by the generation of dislocated lumps and cracks on the sides of the 6H-SiC workpiece. The stresses generated by friction during the plastic deformation phase lead to dislocations in the vicinity of the diamond tip friction, and the process of dislocation nucleation expansion is accompanied by energy exchange. Dislocation formation is found to be the basis for crack generation, and cracks and peeled blocks constitute the subsurface damage of 6H-SiC workpieces by diamond identification methods. Friction experiments validate microscopic crystal changes against macroscopic crack generation, which complements the analysis of the damage mechanism of the simulated 6H-sic nanofriction subsurface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161426PMC
http://dx.doi.org/10.1021/acsomega.2c02115DOI Listing

Publication Analysis

Top Keywords

subsurface damage
20
molecular dynamics
8
dynamics analysis
8
6h-sic
8
investigate subsurface
8
damage 6h-sic
8
6h-sic nanofriction
8
friction 6h-sic
8
microscopic crystal
8
diamond friction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!