Introduction Various markers for diabetes have been identified in this new era of medicine, the most recent being adiponectin, which is primarily secreted from adipose tissue and has anti-diabetic, anti-inflammatory, and anti-atherogenic properties. It is also known to increase insulin sensitivity. Adiponectin deficiency or decreased secretion causes a variety of complications, including insulin resistance and the onset of type 2 diabetes mellitus (T2DM). One such complication of T2DM is endothelial dysfunction, which leads to decreased synthesis of nitric oxide (NO), another potent marker that normally disrupts key events in the progression of atherosclerosis. Aims and objectives The aim of the study was to compare and correlate serum adiponectin and nitric oxide levels with glycemic status in patients with T2DM and healthy controls. Materials and methods This comparative cross-sectional study included known cases of type II diabetes under group I and healthy age-matched controls under group II. Serum levels of adiponectin and nitric oxide were assessed in both the groups along with glycemic status [fasting blood sugar (FBS) and glycated hemoglobin (HbA1c)] and these parameters were compared between both groups using a t-test. Adiponectin and NO levels were correlated using Pearson's correlation with glycemic status in group I. Results The mean adiponectin levels in group I were 5.94 ± 1.490 μg/mL, which was significantly (p<0.00) less than in group II, 10.30 ±1.669 μg/mL. The mean NO levels in group I (42.98 ± 6.300 μmol/L) were also significantly (p<0.00) less than in group II (56.126 ± 7.579 μmol/L). FBS and HbA1C levels were significantly higher in group I than in group II. Conclusion Adiponectin and NO levels were significantly reduced in individuals with T2DM when compared to healthy controls. Therapeutic interventions that increase adiponectin and NO levels may be useful targets for improving diabetes control and reducing complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149778PMC
http://dx.doi.org/10.7759/cureus.24613DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
adiponectin nitric
12
type diabetes
12
glycemic status
12
serum adiponectin
8
oxide levels
8
adiponectin levels
8
adiponectin
6
levels
5
nitric
4

Similar Publications

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!