Motivation: Inferring protein function is an integral part of genome annotation and analysis. This process is usually performed , and most inferences are based on sequence homology approaches, which can fail when in presence of divergent sequences. However, because protein structures and their biological roles are intertwined, protein function can also be inferred by searching for structural homology. Many excellent tools have been released in recent years with regards to protein structure prediction, structural homology searches and protein visualization. Unfortunately, these tools are disconnected from each other and often use a web server-based approach that is ill-suited to high-throughput genome-wide analyses. To help assist genome annotation, we built a structural homology-based pipeline called 3DFI (for tridimensional functional inference) leveraging some of the best structural homology tools. This pipeline was built with simplicity of use in mind and enables genome-wide structural homology inferences.

Availability And Implementation: 3DFI is available on GitHub https://github.com/PombertLab/3DFI under the permissive MIT license. The pipeline is written in Perl and Python.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162058PMC
http://dx.doi.org/10.1093/bioadv/vbab030DOI Listing

Publication Analysis

Top Keywords

structural homology
20
protein function
12
genome annotation
8
protein
6
structural
6
homology
6
3dfi pipeline
4
pipeline infer
4
infer protein
4
function structural
4

Similar Publications

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε.

J Med Chem

December 2024

Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.

Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules.

View Article and Find Full Text PDF

The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.

View Article and Find Full Text PDF

This study focuses on spastic paraplegia type 50 (SPG50), an adapter protein complex 4 deficiency syndrome caused by mutations in the adapter protein complex 4 subunit mu-1 (AP4M1) gene, and on the downstream alterations of the AP4M1 protein. We applied a battery of heterogeneous computational resources, encompassing two in-house tools described here for the first time, to (a) assess the druggability potential of AP4M1, (b) characterize SPG50-associated mutations and their 3D scenario, (c) identify mutation-tailored drug candidates for SPG50, and (d) elucidate their mechanisms of action by means of structural considerations on homology models of the adapter protein complex 4 core. Altogether, the collected results indicate R367Q as the mutation with the most promising potential of being corrected by small-molecule drugs, and the flavonoid rutin as best candidate for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!