Background: Fibrotic scars are common in both human and mouse skin wounds. However, wound-induced hair neogenesis in the murine wounding models often results in regenerative repair response. Herein, we aimed to uncover cellular functional heterogeneity in dermis between fibrotic and regenerative wound healing fates.
Methods: The expression matrix of single-cell RNA sequencing (scRNA-seq) data of fibrotic and regenerative wound dermal cells was filtered, normalized, and scaled; underwent principal components analysis; and further analyzed by Uniform Manifold Approximation and Projection (UMAP) for dimension reduction with the Seurat package. Cell types were annotated, and cell-cell communications were analyzed. The core cell population myofibroblast was identified and the biological functions of ligand and receptor genes between myofibroblast and macrophage were evaluated. Specific genes between fibrotic and regenerative myofibroblast and macrophage were identified. Temporal dynamics of myofibroblast and macrophage were reconstructed with the Monocle tool.
Results: Across dermal cells, there were six cell types, namely, EN1-negative myofibroblasts, EN1-positive myofibroblasts, hematopoietic cells, macrophages, pericytes, and endothelial cells. Ligand and receptor genes between myofibroblasts and macrophages mainly modulated cell proliferation and migration, tube development, and the TGF-β pathway. Specific genes that were differentially expressed in fibrotic compared to regenerative myofibroblasts or macrophages were separately identified. Specific genes between fibrotic and regenerative myofibroblasts were involved in the mRNA metabolic process and organelle organization. Specific genes between fibrotic and regenerative macrophages participated in regulating immunity and phagocytosis. We then observed the underlying evolution of myofibroblasts or macrophages.
Conclusion: Collectively, our findings reveal that myofibroblasts and macrophages may alter the skin wound healing fate through modulating critical signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156976 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.875407 | DOI Listing |
Electrolyte Blood Press
December 2024
Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Diabetic kidney disease (DKD) is a prevalent and complex disease among patients with diabetes in Korea, requiring comprehensive treatment strategies. Traditional management strategies targeting blood pressure, blood sugar, lipid, and lifestyles are foundational approaches of DKD treatment, each of them still holding importance in current paradigms. The four pillars, renin-angiotensin system(RAS) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and non-steroidal mineralocorticoid receptor antagonists (nsMRA) can enhance DKD treatment.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA.
: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described.
View Article and Find Full Text PDFCells
December 2024
Centre for Regenerative Medicine, Medical Research and Educational Institute, Lomonosov Moscow State University, 119192 Moscow, Russia.
Fibrotic focus is a pivotal morphofunctional unit in developing fibrosis in various tissues. For most fibrotic diseases, including progressive forms, the foci are considered unable to remodel and contribute to the worsening of prognosis. Unfortunately, the dynamics of the fibrotic focus formation and resolution remains understudied.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.
Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!