Background: Fibrotic scars are common in both human and mouse skin wounds. However, wound-induced hair neogenesis in the murine wounding models often results in regenerative repair response. Herein, we aimed to uncover cellular functional heterogeneity in dermis between fibrotic and regenerative wound healing fates.

Methods: The expression matrix of single-cell RNA sequencing (scRNA-seq) data of fibrotic and regenerative wound dermal cells was filtered, normalized, and scaled; underwent principal components analysis; and further analyzed by Uniform Manifold Approximation and Projection (UMAP) for dimension reduction with the Seurat package. Cell types were annotated, and cell-cell communications were analyzed. The core cell population myofibroblast was identified and the biological functions of ligand and receptor genes between myofibroblast and macrophage were evaluated. Specific genes between fibrotic and regenerative myofibroblast and macrophage were identified. Temporal dynamics of myofibroblast and macrophage were reconstructed with the Monocle tool.

Results: Across dermal cells, there were six cell types, namely, EN1-negative myofibroblasts, EN1-positive myofibroblasts, hematopoietic cells, macrophages, pericytes, and endothelial cells. Ligand and receptor genes between myofibroblasts and macrophages mainly modulated cell proliferation and migration, tube development, and the TGF-β pathway. Specific genes that were differentially expressed in fibrotic compared to regenerative myofibroblasts or macrophages were separately identified. Specific genes between fibrotic and regenerative myofibroblasts were involved in the mRNA metabolic process and organelle organization. Specific genes between fibrotic and regenerative macrophages participated in regulating immunity and phagocytosis. We then observed the underlying evolution of myofibroblasts or macrophages.

Conclusion: Collectively, our findings reveal that myofibroblasts and macrophages may alter the skin wound healing fate through modulating critical signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156976PMC
http://dx.doi.org/10.3389/fimmu.2022.875407DOI Listing

Publication Analysis

Top Keywords

fibrotic regenerative
24
specific genes
16
regenerative wound
12
wound healing
12
myofibroblast macrophage
12
genes fibrotic
12
myofibroblasts macrophages
12
cellular functional
8
functional heterogeneity
8
heterogeneity dermis
8

Similar Publications

Diabetic kidney disease (DKD) is a prevalent and complex disease among patients with diabetes in Korea, requiring comprehensive treatment strategies. Traditional management strategies targeting blood pressure, blood sugar, lipid, and lifestyles are foundational approaches of DKD treatment, each of them still holding importance in current paradigms. The four pillars, renin-angiotensin system(RAS) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and non-steroidal mineralocorticoid receptor antagonists (nsMRA) can enhance DKD treatment.

View Article and Find Full Text PDF

: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described.

View Article and Find Full Text PDF

Fibrotic focus is a pivotal morphofunctional unit in developing fibrosis in various tissues. For most fibrotic diseases, including progressive forms, the foci are considered unable to remodel and contribute to the worsening of prognosis. Unfortunately, the dynamics of the fibrotic focus formation and resolution remains understudied.

View Article and Find Full Text PDF

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation therapy (RT) is crucial for cancer treatment but often damages surrounding normal tissues, leading to complications like fibrosis and decreased organ function.
  • Conventional RT promotes epithelial-mesenchymal transition (EMT), which is linked to tissue damage and cancer progression.
  • FLASH radiation therapy (FLASH-RT) offers a promising alternative by delivering high doses rapidly, potentially reducing normal tissue damage while preserving regenerative capacity and mitigating fibrosis through improved regulation of EMT pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!