Genetic alterations leading to the constitutive upregulation of specific efflux pumps contribute to antibacterial resistance in multidrug resistant bacteria. The identification of such resistance markers remains one of the most challenging tasks of genome-level resistance predictors. In this study, 487 non-redundant genetic events were identified in upstream zones of three operons coding for resistance-nodulation-division (RND) efflux pumps of 4,130 isolates. These events included insertion sequences, small indels, and single nucleotide polymorphisms. In some cases, alterations explicitly modified the expression motifs described for these operons, such as the promoter boxes, operators, and Shine-Dalgarno sequences. In addition, changes in DNA curvature and mRNA secondary structures, which are structural elements that regulate expression, were also calculated. According to their influence on RND upregulation, the catalog of upstream modifications were associated with "experimentally verified," "presumed," and "probably irrelevant" degrees of certainty. For experimental verification, DNA of upstream sequences independently carrying selected markers, three for each RND operon, were fused to a luciferase reporter plasmid system. Five out of the nine selected markers tested showed significant increases in expression with respect to the wild-type sequence control. In particular, a 25-fold expression increase was observed with the IS1 insertion sequence upstream the pump. Next, overexpression of each of the three multi-specific RND pumps was linked to their respective antibacterial substrates by a deep literature screen. Consequently, a data flow framework was then developed to link genomic upregulatory RND determinants to potential antibiotic resistance. Assignment of potential increases in minimal inhibitory concentrations at the "experimentally verified" level was permitted for 42 isolates to 7-8 unrelated antibacterial agents including tigecycline, which is overlooked by conventional resistome predictors. Thus, our protocol may represent a time-saving filter step prior to laborious confirmation experiments for efflux-driven resistance. Altogether, a computational-experimental pipeline containing all components required for identifying the upstream regulatory resistome is proposed. This schema may provide the foundational stone for the elaboration of tools approaching antibiotic efflux that complement routine resistome predictors for preventing antimicrobial therapy failure against difficult-to-threat bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161033 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.869208 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
The global dissemination of pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of , collected from 2018 to 2024. The majority of the isolates (64.
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
is considered one of the prioritized ESKAPE microorganisms for the research and development of novel treatments by the World Health Organization, especially because of its remarkable persistence and drug resistance. In this review, we describe how this can be acquired by the enzymatic degradation of antibiotics, target site modification, altered membrane permeability, multidrug efflux pumps, and their ability to form biofilms. Also, the evolution of drug resistance in , which is mainly driven by mobile genetic elements, is reported, with particular reference to plasmid-associated resistance, resistance islands, and insertion sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!